
Building and Evaluating
Privacy-Preserving Data

Processing Systems

Luca Melis

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

2

3

I, Luca Melis, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this

has been indicated in the work.

“Non sai che fare, non sai dove andare, miagoli nel buio.”

(Quelo)

Abstract

Large-scale data processing prompts a number of important challenges,

including guaranteeing that collected or published data is not misused, pre-

venting disclosure of sensitive information, and deploying privacy protection

frameworks that support usable and scalable services.

In this dissertation, we study and build systems geared for privacy-friendly

data processing, enabling computational scenarios and applications where po-

tentially sensitive data can be used to extract useful knowledge, and which

would otherwise be impossible without such strong privacy guarantees. For

instance, we show how to privately and efficiently aggregate data from many

sources and large streams, and how to use the aggregates to extract useful

statistics and train simple machine learning models. We also present a novel

technique for privately releasing generative machine learning models and entire

high-dimensional datasets produced by these models. Finally, we demonstrate

that the data used by participants in training generative and collaborative

learning models may be vulnerable to inference attacks and discuss possible

mitigation strategies.

6 Abstract

Impact Statement

The results presented in this dissertation will likely facilitate the design,

development, and evaluation of innovative techniques for privacy-aware data

collection and machine learning. Stakeholders and practitioners will thus be

able to overcome the increasingly relevant tension between the utility of ex-

tracting knowledge from data and the responsibility to protect individuals’

privacy. More specifically, this dissertation introduces novel techniques for

privacy-preserving collection of statistics, allowing providers to instantiate pro-

tocols and build systems addressing “real-world” applications. To this end, we

have designed and developed a scalable and easy-to-integrate framework sup-

porting privacy-preserving computation of analytics based on large-scale and

private data aggregation. Further, in a first-of-its-kind attempt to build a

private generative machine learning model based on neural networks, our re-

search will allow companies to generate and share synthetic high-dimensional

data without incurring risks of privacy breaches.

This dissertation also sets out to study how machine learning models may

lead to information leakage, thus addressing important academic and policy

challenges. Our research identifies a few important gaps in the academic liter-

ature related to the evaluation of membership inference in both collaborative

learning and generative machine learning models, as well as to the investiga-

tion of property inference in collaborative learning. In particular, membership

inference can directly violate privacy if inclusion in a training set is itself sensi-

tive. For example, if synthetic health-related images (generated by generative

models) are used, e.g., for research purposes, discovering that a specific record

8 Impact Statement

was used for training leaks information about the individual’s health. There-

fore, regulators can use membership inference to support the suspicion that

a model was trained on personal data without an adequate legal basis, or for

a purpose not compatible with the data collection, e.g., to detect violations

of data protection regulations such as the new EU General Data Protection

Regulation (GDPR). Machine learning as a service (MLaaS) providers can use

our inference attacks as a benchmark before allowing third parties access to

the model; providers may restrict access in case the inference attack yields

good results.

Finally, the academic community at large can benefit from our work, in

that it advances the state of the art in studying and addressing the challenges

of privacy-preserving analytics in innovative and more effective ways, as well as

motivating the need for future research on investigating better defenses against

inference attacks. Therefore, we are confident our research will promote inter-

disciplinary collaborations at the intersection of security/privacy and machine

learning.

Acknowledgements

First and foremost I want to thank my advisor Emiliano De Cristofaro.

It has been an honor to be his first doctoral student. I am grateful for all his

contributions of time and ideas to make my research experience productive and

stimulating. The passion he has for research has been extremely motivational

for me, even during (countless) tough times in my Ph.D. pursuit.

I would also like to express my gratitude to my viva examiners, Sebastian

Riedel and Hamed Haddadi, for their precious feedback on my dissertation.

I have been very lucky to work with great researchers: Jamie Hayes,

Apostolos Pyrgelis, Conghzeng Song, Cyril Soldani, George Danezis, Gergely

Acs, Gábor Gulyás, Vitaly Shmatikov, Hassan Jameel Asghar, Mohamed Ali

Kaafar, and Laurent Mathy.

My sincere thanks also go to Claude Castelluccia and Baris Coskun, who

provided me the invaluable opportunity to join their research groups at INRIA

and AWS as intern.

I gratefully acknowledge the funding sources that made my research work

possible. I was funded by the UCL Computer Science department and was

honored to be an enrichment student at The Alan Turing Institute.

And finally, last but by no means least, I would like to thank everyone in

the InfoSec Research Group at UCL. It was great living the #phdlife with all

of you.

Grazie!

Luca

10 Acknowledgements

Contents

1 Introduction 25

1.1 Research Questions . 28

1.2 Thesis Contributions . 29

1.3 Thesis Structure . 30

1.4 Publications . 31

1.5 Further Contributions . 31

2 Background 33

2.1 Cryptography . 33

2.1.1 Tools . 33

2.1.2 Assumptions . 34

2.1.3 Differential Privacy (DP) 35

2.2 Succinct Data Structures . 40

2.3 Machine Learning . 42

2.3.1 Recommender systems 42

2.3.2 Time-series data prediction 43

2.3.3 Kernel k-means with random features 43

2.3.4 Neural networks . 45

2.3.5 Collaborative learning 49

3 Related Work 53

3.1 Private Statistics . 53

3.1.1 Privacy-preserving aggregation 53

12 Contents

3.1.2 Privacy and succinct data representation 56

3.2 Privacy in Machine Learning . 57

3.2.1 Learning with privacy 57

3.2.2 Private data release . 59

3.2.3 Membership inference attacks 61

3.2.4 Other attacks on machine learning models 63

4 Efficient Privacy-Preserving Computation of Statistics 67

4.1 Private Recommender Systems For Streaming Services 68

4.1.1 Overview . 68

4.1.2 Protocol . 69

4.1.3 Prototype implementation 73

4.1.4 Performance evaluation 74

4.2 Private Aggregate Location Prediction 77

4.3 Tor Hidden Services Statistics 82

4.3.1 Private median estimation using Count Sketch 82

4.3.2 Implementation and evaluation 85

5 Privacy-Preserving Data Release with Generative Neural Net-

works 91

5.1 Differentially Private Generative Model (DPGM) 92

5.1.1 Private kernel k-means 94

5.1.2 Private Stochastic Gradient Descent 99

5.1.3 Adaptive selection of the norm bound 99

5.1.4 Synthetic data generation 101

5.2 Privacy Analysis . 102

5.3 Experimental Evaluation . 106

5.3.1 Experimental setup . 106

5.3.2 Results with image dataset 107

5.3.3 Results with CDR and transit dataset 112

5.3.4 Multi-layer Variational Autoencoder 113

Contents 13

6 Evaluating Privacy Leakage of Generative Models 115

6.1 Attacks Outline . 116

6.1.1 Threat model . 116

6.1.2 White-box attack . 117

6.1.3 Black-box attack with no auxiliary knowledge 119

6.1.4 Black-box attack with limited auxiliary knowledge 120

6.2 Evaluation . 122

6.2.1 Experimental setup . 122

6.2.2 Naïve approaches . 124

6.2.3 White-box attack . 126

6.2.4 Black-box attack with no auxiliary knowledge 128

6.2.5 Black-box attack with limited auxiliary knowledge 129

6.2.6 Analysis . 133

6.2.7 Evaluation on Diabetic Retinopathy dataset 134

6.3 Discussion . 136

6.3.1 Cost of the attacks . 137

6.3.2 Sensitivity to training set size and prediction ordering . . 138

6.3.3 Defenses . 140

7 Evaluating Privacy Leakage of Collaborative Learning 143

7.1 Inference Attacks . 144

7.1.1 Threat model . 144

7.1.2 Overview of the attacks 145

7.1.3 Membership inference 146

7.1.4 Passive property inference 147

7.1.5 Active property inference 149

7.2 Experiments . 150

7.2.1 Datasets and model architectures 150

7.2.2 Two-party membership inference 153

7.2.3 Two-party single-batch property inference 154

7.2.4 Inferring when a property occurs 157

14 Contents

7.2.5 Active property inference 159

7.2.6 Multi-party with synchronized SGD 160

7.2.7 Multi-party with model averaging 161

7.3 Defenses . 164

7.3.1 Selective gradient sharing 164

7.3.2 Dimensionality reduction 165

7.3.3 Dropout . 166

7.3.4 Participant-level differential privacy 166

7.3.5 Sensitivity to number of training epochs 167

8 Conclusion 169

Bibliography 173

List of Figures

2.1 Update procedure for the Count-Min Sketch. 40

2.2 Generative Adversarial Network (GAN). 48

2.3 Collaborative Learning. 49

3.1 Samples from a GAN attack on a gender classification model

where the class is “female”. 64

4.1 Cryptographic layer of our private recommender system for on-

line streaming services. At setup (1), users compute their se-

cret share and send their public key to the tally, who broad-

casts them to the other users. During the encryption phase

(2), each user computes the blinding factors, encrypts their

Count-Min Sketch and sends it to the tally. In case not all

users have sent the data, the tally broadcasts Uon, the sub-

set of users that did (3). These compute new blinding factors

and send them to the tally (4). Aggregate sketches are then

recovered by the tally (5). 70

4.2 Execution time for increasing number of users (with 700 pro-

grams). 74

4.3 Execution time for increasing number of programs (with 1,000

users). 75

4.4 Execution time for increasing number of programs (with 1,000

users) without Count-Min Sketch. 75

16 List of Figures

4.5 Visualizing the accuracy of the Count-Min Sketch for the most

50 frequent items (with 700 programs and sketch size 4,896). . . 78

4.6 Number of taxi locations over time. 79

4.7 Average error introduced by the Count-Min Sketch on the ag-

gregate statistics for the top-100 locations. 80

4.8 Mean absolute error in the prediction for different values of pre-

diction algorithm’s parameter α. 81

4.9 Mean absolute error introduced by the Count-Min Sketch on

the prediction accuracy. 81

4.10 Count Sketch size versus estimation quality. 86

4.11 Quality versus differential privacy protection. 87

5.1 Overview of our differentially private generative model (DPGM)

algorithm. 92

5.2 ε value as a function of the number of SGD training epochs for

MNIST (δ = 10−5,TK = 20) . 108

5.3 Clustering accuracy as a function of ε on MNIST (δ =

10−5,TK = 20). 109

5.4 Real MNIST samples and samples generated from DPGM with

RBM and VAE after 20 epochs (ε= 1.74,TK = 20). In (c) and

(d), each row contains 8 samples generated from a cluster. . . . 110

5.5 Average relative error vs. ε for the CDR dataset (q = 2.2 ·

10−5, δ = 4.4 ·10−6) . 111

5.6 Average relative error vs. ε for the transit dataset (q= 10−4, δ=

10−6) . 112

5.7 Samples generated from a double layer VAE after 20 epochs.

Each row contains 8 samples generated from a cluster. 114

5.8 Average relative error with ε = 1.0 for the CDR and transit

datasets. 114

6.1 High-level Outline of the White-Box Attack. 118

List of Figures 17

6.2 White-Box Prediction Method: The attacker inputs data-points

to the DiscriminatorD (1), extracts the output probabilities (2),

and sorts them (3). 118

6.3 High-level overview of the (a) black-box attack with no auxiliary

knowledge, and (b) Discriminative and (c) Generative black-box

attack with limited auxiliary attacker knowledge. 119

6.4 Real samples. 122

6.5 Euclidean attack results for DCGAN target model trained on a

random 10% subset of CIFAR-10 and LFW. 125

6.6 Black-box attack results with 10% auxiliary attacker training set

knowledge used to train a DCGAN shadow model for DCGAN

target model trained on a random 10% subset of LFW. 125

6.7 Accuracy of white-box attack with different datasets and train-

ing sets. 126

6.8 Accuracy of black-box attack on different datasets and training

sets. 128

6.9 Membership inference accuracy using a discriminative model,

when the attacker has knowledge of (i) 20% of the test set, or

(ii) 30% of both training and test sets. In (i), randomly guessing

the training set corresponds to 14% accuracy, in (ii), to 12%

accuracy. 130

6.10 Black-box attack results with 20% attacker training set knowl-

edge for DCGAN/DCGAN+VAE target models, trained on a

random 10% subset of LFW, for different delays at which aux-

iliary knowledge is introduced into the attacker model training. . 131

6.11 Black-box results when the attacker has (a) knowledge of 20% of

the training set or (b) 30% of the training set and test set. The

training set is a random 10% subset of the LFW or CIFAR-10

dataset, and the target model is fixed as DCGAN. 132

18 List of Figures

6.12 Accuracy curves and samples at different stages of training on

top ten classes from the LFW dataset, showing a clear correla-

tion between higher accuracy and better sample quality. 133

6.13 Various samples from the real dataset, target model, and black-

box attack using the DCGAN target model on LFW, top ten

classes. 133

6.14 Real and generated diabetic retinopathy dataset samples. 135

6.15 Accuracy curves of attacks against a DCGAN target model on

the Diabetic Retinopathy dataset. 136

6.16 Improvements over random guessing, in a black-box attack, as

we vary the size of the training set, and consider smaller subsets

for training set predictions. 138

6.17 Improvement over random guessing for Weight Normalization

and Dropout defenses against white-box attacks on models

trained over different number of classes with LFW. 141

6.18 Accuracy curve and samples for different privacy budgets on top

ten classes from the LFW dataset, showing a trade-off between

samples quality and privacy guarantees. 142

7.1 Overview of inference attacks against collaborative learning. . . 145

7.2 Active property inference attack. 149

7.3 t-SNE projection of the features from different layers of the joint

model on LFW gender classification; 0 is female, 1 is male. The

property (i.e., the blue points denoted by p-0 and p-1) is “race:

black”, while the red points without the property are denoted

by np-0 and np-1 . 156

7.4 AUC vs. the fraction of the batch that has the property on

FaceScrub and Yelp-author. 158

7.5 Detecting occurrence of a single-batch property. 158

7.6 Active property inference attack on FaceScrub. 160

List of Figures 19

7.7 Multi-party with synchronized SGD: attack AUC score vs. the

number of participants. 161

7.8 Multi-party collaborative training with model averaging: box

plots show the distribution of the adversary’s scores in each

trial. In the 8 trials on the left, one of the participants’ data

has the property; in the 8 trials on the right, none of the honest

participants have the data with the property. 162

7.9 Detecting when a participant whose local data has the property

of interest joins the training. K = 2 for rounds 0 to 250, K = 3

for rounds 250 to 500. 164

7.10 Uniqueness of user profiles with respect to the number of top

locations. 164

7.11 Attack performance with respect to the number of collaborative

learning epochs. 168

20 List of Figures

List of Tables

4.1 Bytes exchanged by user and tally for different #users and

size of the Count-Min Sketch, considering 700 programs. 77

4.2 Median estimation with 22 ciphertexts (d = 2, w = 11, ε,δ =

0.25) and 165 ciphertexts (d = 3, w = 55, ε,δ = 0.05) on the

London Atlas Dataset. 89

5.1 Notation and symbols used in this chapter. 93

5.2 The datasets used in our experiments: MNIST (images), CDR

(call detail records), and TRANSIT (transport records). 106

6.1 Accuracy of the best attacks on random 10% training set for

LFW and CIFAR-10, and for the diabetic retinopathy (DR)

experiments. 136

7.1 Datasets and tasks used in our experiments. 151

7.2 Precision of membership inference (recall is 1). 153

7.3 AUC score of single-batch property inference on LFW. We also

report the Pearson correlation between the main task label and

the property label. 155

7.4 Words with the largest positive coefficients in the property clas-

sifier for Yelp-health. 157

7.5 Inference attacks against the CSI Corpus for different fractions

of gradients shared during training. 165

7.6 Membership inference against the CSI Corpus and FourSquare

for different vocabulary sizes. 166

22 List of Tables

7.7 Inference of the top region (Antwerpen) on the CSI Corpus for

different values of dropout probability. 167

List of Algorithms

1 Parameter server with synchronized SGD 50

2 Federated learning with model averaging 51

3 DPGM: Differentially Private Generative Model 94

4 DPkmeans: Private kernel k-means with Random Fourier Fea-

tures . 96

5 Private Stochastic Gradient Descent 100

6 DPNorm: Private Approximation of Average Norm 101

7 Batch Property Classifier . 147

24 LIST OF ALGORITHMS

Chapter 1

Introduction

With the widespread deployment of complex Internet-based services, large

amounts of data, including sensitive information, are being constantly pub-

lished, collected, and processed [45, 117]. This abundance of contextual in-

formation makes it increasingly possible to extract value and knowledge from

data. Examples include tracking GPS locations reported by mobile devices to

generate live traffic maps (Google Traffic) and suggest more efficient routes [40];

analyzing social media content for disaster management [206], consumer confi-

dence [161], and urban neighborhoods [181]; tracking disease incidence through

geographic analysis of web search queries on the use of specific key words over

time [121]; generating artificially created multimedia content from real data,

e.g., images [112] and videos [182]; enabling endpoint devices to jointly learn

a common predictive model while keeping all the raw data in the device [143].

This dissertation focuses on the privacy challenges presented by two novel

and demand-driven technological trends in data processing: (1) data collection,

which is the process of gathering information from different input sources,

and (2) machine learning (ML), which gives artificial intelligence systems the

capability to acquire their own knowledge by extracting patterns from raw

data [86].

First, the large-scale collection of user data raises serious privacy, confiden-

tiality, and liability concerns, thus motivating the need for efficient and scalable

techniques allowing providers to privately gather statistics. Rather than re-

26 Chapter 1. Introduction

leasing only specific aggregate statistics, such as certain counting queries or

histograms, entities are often willing or compelled to publish their datasets,

e.g., aiming to monetize it or allow third parties with the appropriate ex-

pertise to analyze it. For instance, Call Detail Records (CDRs) collected by

telecommunication companies are not only useful to capture interactions be-

tween customers, but also to understand their behavior, e.g., for infectious

disease spreading or migration patterns.1 As a result, telecommunications

companies are often interested in releasing them in the form of “anonymized”

datasets, which replace the original records in any data analytics without re-

quiring any further interaction with the publisher.

However, as individuals usually have an unique combination of attribute

values in these high-dimensional datasets, their exploitation and sharing are

hindered by potential privacy breaches as well as implied monetary penalties.

For instance, AOL released a detailed search logs dataset for research purposes,

and Netflix released users’ ratings to allow an open competition for the best

ML algorithm designed to predict user ratings for unseen movies. Personal

identifiers such as names were removed from these datasets as a guarantee for

the users in the datasets to remain anonymous. Nonetheless, Narayanan and

Shmatikov [157] were later able to identify individual users by cross-referencing

their data records, and both companies were sued for privacy breach.2,3

Second, over the past few years, ML has played an increasing role in

data processing systems due to its capability of efficiently discovering valu-

able knowledge and hidden information. Companies like Google, Microsoft,

and Amazon provide customers with access to APIs that allow them to easily

embed ML tasks into their applications. For instance, organizations provide

Machine Learning as a Service (MLaaS) engines to outsource complex tasks,

such as training classifiers, performing predictions, clustering, etc. They can

also let other users query models trained on their data, possibly at a cost.

1See, e.g., http://www.flowminder.org
2https://www.wired.com/2009/12/netflix-privacy-lawsuit/
3https://www.cnet.com/news/aol-sued-over-web-search-data-release/

http://www.flowminder.org
https://www.wired.com/2009/12/netflix-privacy-lawsuit/
https://www.cnet.com/news/aol-sued-over-web-search-data-release/

27

Among these techniques, generative models are an important emerging area in

ML, as recent developments are paving the way for artificial generation of per-

fectly plausible images and videos. They are used in a number of applications,

e.g., compression [198], denoising [23], inpainting [221], super-resolution [125],

semi-supervised learning [183], clustering [197], and deep neural networks pre-

training [79] in cases where labeled data is expensive.

However, if malicious users can infer sensitive properties of data used

to train these models, this leads to dangerous information leakage. More

specifically, the ability of an adversary to ascertain the presence of a specific

data point in a training dataset constitutes an immediate privacy threat if the

dataset is sensitive per se. For instance, if a model was trained on the records

of patients with a certain disease, learning that an individual’s record was part

of the training data directly affects their privacy. On the one hand, users do

not have much control over the kind of models and training parameters used

by MLaaS platforms, and this might lead to overfitting (i.e., the model does

not generalize well outside the data on which it was trained), thus making it

easier for an attacker to perform inference attacks. On the other hand, this

type of inference can also help enforce individual rights such as the “right to

be forgotten”, demonstrate inappropriate uses of data (e.g., the use of health-

care records to train ML models for unauthorized purposes [20]), and/or detect

violations of data protection regulations such as the GDPR [81].

More recently, collaborative ML has emerged as an alternative to conven-

tional MLaaS methodologies where all training data is pooled and the model

trained on this joint pool. It allows two or more participants, each with his

own training dataset, to work together to construct a joint model. More specif-

ically, each participant trains a local model on his own data and periodically

exchanges model parameters, updates to these parameters, or partially con-

structed models with the other participants. Many architectures, systems,

and protocols have been proposed for distributed, collaborative, and federated

learning [63, 51, 215, 154, 129, 228]: with and without a central server, with

28 Chapter 1. Introduction

different ways of aggregating and averaging models, etc. Their typical goal is

to improve the training speed and reduce overheads, but protecting the privacy

of participants’ training data is an important motivation for several recent col-

laborative learning systems [143, 190]. Because the training data never leaves

the participants’ machines, collaborative learning may be considered as a good

match for the scenarios where this data is sensitive (e.g., health-care records,

private communications, personally identifiable information, etc.), and the par-

ticipants want to construct a joint model without disclosing their datasets.

Collaborative training, however, does disclose information via model updates

that are indirectly based on the training data.

Together, these scenarios prompt a number of crucial challenges, including

how to guarantee that the collected or published data are not misused; how to

ensure that data processing does not lead to disclosure of sensitive information;

and how to define privacy protection frameworks that allow usable and scalable

services.

1.1 Research Questions
The broad goal of this dissertation is to tackle the following research

problem:

Can we build and evaluate systems geared for privacy-friendly data process-

ing, while enabling computational scenarios and applications where potentially

sensitive data is needed to extract useful knowledge with strong privacy guar-

antees?

Such goal entails addressing several open research questions, including:

1. Training ML models based on aggregate statistics gathered from many

data sources without disclosing fine-grained information about single

sources and in an efficient manner.

2. Releasing synthetic datasets that resemble real datasets without incur-

ring privacy breaches.

1.2. Thesis Contributions 29

3. Evaluating if an adversary can infer information about the data used to

train ML models.

1.2 Thesis Contributions
Overall, this dissertation investigates the design and evaluation of privacy-

aware data processing mechanisms. The contributions of this dissertation in-

clude:

1. We combine privacy-preserving aggregation with data structures sup-

porting succinct data representation, namely, Count-Min Sketch [56] and

Count Sketch [44]. Private aggregation is performed over the sketches,

rather than the raw inputs. While an upper-bounded error in the ag-

gregate is introduced, this allows us to reduce communication and com-

putational complexity (for the cryptographic operations) from linear to

logarithmic in the size of the inputs. We then use the resulting private

statistics tools to instantiate protocols and build systems addressing real-

world applications, where the error does not affect the overall quality of

the computation. Specifically, we present and implement three protocols,

(i) a privacy-preserving recommender system for on-line broadcasters, (ii)

a private location prediction service, and (iii) a scheme for computing

median statistics of Tor [65] hidden services in a private way.

2. We propose a novel approach, relying on generative neural networks,

to model the data generating distribution of various kinds of data. It

provides differential privacy [75] to each individual in the training data,

thus, it can be used to effectively “anonymize” and share large high-

dimensional datasets with any potentially adversarial third party. To

this end, we present a Differentially Private Generative Model (DPGM),

where data is first clustered, using the differentially private kernel k

-means, and then each cluster is given to separate generative neural net-

works which are trained only on their own cluster using differentially

private gradient descent.

30 Chapter 1. Introduction

3. We study how generating synthetic samples through generative models

may lead to information leakage, hence, to violating privacy of indi-

viduals contributing their (sensitive) data to train these models. More

specifically, given access to a generative model and an individual data

record, we assess whether an attacker can tell if a specific record was

used to train the model; this is also known as membership inference.

Aiming to perform membership inference on generative ML models, we

use Generative Adversarial Network (GAN) [87] models as a method to

learn information about the target generative model, and thus create a

local copy of the target model from which we can launch the attack.

4. We demonstrate that the training data used by participants in collab-

orative learning is vulnerable to a number of inference attacks. First,

we show that an adversarial participant can infer the presence of exact

data points of another participant’s training data (i.e., membership in-

ference). We then propose passive and active property inference attacks.

These allow an adversarial participant in collaborative learning to infer

properties of another participant’s training data that are not true of the

class as a whole, or even independent of the features that characterize

the classes of the joint model.

1.3 Thesis Structure
The remainder of this dissertation is organized as follows. Chapter 2

provides background about notions and main tools that are used throughout

the dissertation. Then, Chapter 3 discusses relevant related work in the context

of privacy-preserving data processing. Chapters 4 to 7 contain the technical

contribution of this dissertation. In particular, Chapter 4 covers work done

on privacy-preserving collection of statistics. Then, Chapter 5 presents the

work done on the problem of automating the process of private data release.

In Chapter 6, we tackle the problem of evaluating privacy leakage in generative

ML models. Chapter 7 covers our work on the topic of inference attacks against

1.4. Publications 31

collaborative ML.

Finally, Chapter 8 concludes the dissertation with a discussion on our

contributions, and offers some potential future directions.

1.4 Publications
The material in this dissertation has been submitted or published in con-

ferences and journals, co-authored with several researchers. Specifically, work

in Chapter 4 has been done in collaboration with George Danezis and Emil-

iano De Cristofaro, and published in the proceedings of ISoc NDSS 2016 [147].

Chapter 5 presents the results of joint work with Gergely Acs, Claude Castel-

luccia, and Emiliano De Cristofaro, and published in the proceedings of IEEE

ICDM 2017 and in the IEEE TKDE journal [3]. Chapter 6 is the outcome of

the collaborative work with Jamie Hayes, George Danezis, and Emiliano De

Cristofaro, and published in the journal Proceedings on Privacy Enhancing

Technologies (PoPETs) 2019 [94]. Finally, Conghzeng Song, Vitaly Shmatikov,

and Emiliano De Cristofaro have collaborated on the results presented in Chap-

ter 7, and published in the proceedings of IEEE Security & Privacy 2019 [148].

1.5 Further Contributions
Besides the research included in this dissertation, we made further con-

tributions with other researchers in the area of private network data process-

ing. The associated research works have been published in the proceedings of

the ACM CODASPY Workshop on SDN-NFV Security 2016 [149] and ACM

SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function

Virtualization [13], in collaboration with Hassan Jameel Asghar, Mohamed Ali

Kaafar, Cyril Soldani, Emiliano De Cristofaro, and Laurent Mathy.

32 Chapter 1. Introduction

Chapter 2

Background

This chapter reviews concepts and tools in cryptography, succinct data

structures, and machine learning that will be used throughout this dissertation.

2.1 Cryptography
We start by outlining some cryptographic primitives used in the rest of

this dissertation.

2.1.1 Tools

Negligible function. A function f(τ) is negligible in the security parameter

τ if, for every polynomial p, it holds that f(τ)< 1
|p(t)| , for large enough t.

Pairwise Independent Hash Functions. Let H be a family of random-

looking hash functions mapping values from a domain [D] to a range [R]. H is

pairwise independent if and only if ∀x 6= y ∈ [D] and ∀a1,a2 ∈ [R]:

Pr
h∈H

[h(x) = a1∧h(y) = a2] = 1
R2 .

Fully Homomorphic Encryption (FHE) A fully homomorphic encryption

scheme (FHE) is a semantically secure cryptosystem that permits algebraic

manipulations on plaintexts given their respective ciphertexts. More formally,

a FHE scheme involves the following algorithms:

• Key generation: Given the security parameter k, generates public and

private key pair (pk,sk).

34 Chapter 2. Background

• Encryption: Given plaintext m ∈ {0,1}∗, outputs ciphertext c = E(m)

encrypted under public key pk.

• Decryption: Given a ciphertext c, outputs the plaintext m=D(c) using

the secret key sk.

• Homomorphic Addition (Add): Given two ciphertexts c1 = E(m1), c2 =

E(m2), and the public key pk, produces a ciphertext c = Add(c1, c2) =

c1 + c2 such that D(c) =m1 +m2.

• Homomorphic Multiplication (Mult): Given two ciphertexts c1 =E(m1),

c2 = E(m2), and the public key pk, produces a ciphertext c as c =

Mult(c1, c2) = c1 · c2 such that D(c) =m1 ·m2.

A partial homomorphic encryption scheme only supports either addition or

multiplication.

Homomorphic encryption schemes allow arbitrarily computations to be

performed on encrypted data without decrypting it. For instance, homomor-

phic encryption can be used to process encrypted DNA sequences in the cloud,

or full text searching on encrypted data.

2.1.2 Assumptions

We now present some cryptographic assumptions used in the rest of this

dissertation.

Computational Diffie Hellman Assumption (CDH). Let G be a cyclic

group of order q (|q| = τ , for security parameter τ), with generator g. We

say that the Computational Diffie Hellman (CDH) problem is hard if, for any

probabilistic polynomial-time algorithm Â and random x,y drawn from Zq:

Pr
[
Â(G, q,g,gx,gy) = gxy

]
is negligible in the security parameter τ .

Decisional Diffie Hellman Assumption (DDH). Let G be a cyclic group

of order q (|q|= τ), with generator g. We say that the Decisional Diffie Hellman

2.1. Cryptography 35

(DDH) problem is hard if, for any probabilistic polynomial-time algorithm Â′

and random x,y,z drawn from Zq:∣∣∣∣Pr
[
Â′(G, q,g,gx,gy,gz) = 1

]
−Pr

[
Â′(G, q,g,gx,gy,gxy) = 1

] ∣∣∣∣
is negligible in the security parameter τ .

These assumptions are based on problems involving discrete logarithms

in cyclic groups. They are commonly used as the basis to prove the security

of many cryptographic protocols, e.g., the ElGamal cryptosystem [78]. The

DDH and CDH assumptions are related to each other. If it were possible

to efficiently compute gxy from (gx,gy), then one could easily distinguish the

two probability distributions in DDH. It is believed that DDH is a stronger

assumption than CDH. DDH and CDH are variants of the more general Diffie

Hellman problem (DHP) in which, given g, gx and gy, the problem is to find

the value of gxy. The main motivation for this problem is that many security

systems rely on one-way functions, i.e., operations that are fast to compute,

but hard to reverse. In cryptography, one-way functions enable encrypting

a message, while making it difficult to decrypt the same message without

knowing some private information. If it were possible to efficiently solve DHP,

then security systems that rely on DHP would be easily broken.

2.1.3 Differential Privacy (DP)
Differential privacy can be motivated by the impossibility result, for a

statistical database, to achieve the privacy goal of preventing disclosure about

any individual against adversaries with arbitrary auxiliary while still providing

any useful information. We can further consider the following example taken

from [69]:

Given a statistical database that provides the average height for pop-

ulation subgroups, and the auxiliary information “Terry Gross is two inches

shorter than the average Lithuanian woman”. An adversary with this auxiliary

information and access to the database is able to recover Terry Gross’ height,

whereas an adversary with only auxiliary information learns much less about

36 Chapter 2. Background

Terry Gross’ height. However, Terry Gross is not required to be part of the

statistical database in order for this privacy breach to happen. Therefore, dif-

ferential privacy notion aims to minimize the increased risk that an individual

incurs by joining – or leaving – the database [69].

More concretely, differential privacy allows a party to privately release

a dataset: using perturbation mechanisms, a function of an input dataset is

modified, so that any information which can discriminate a record from the

rest of the dataset is bounded [75]. Hence, any information that can be learned

from the database with a record can also be learned from the one without this

record. Consequently, for a record owner, it means that any privacy breach

will not be due to participating in the database.

More formally, ε-differential privacy is defined as follows:

Definition 1 (ε-Differential Privacy [75]). A privacy mechanism A guarantees

ε-differential privacy if for any database X ∈X and X ′ ∈X differing on at most

one record, and for any possible output O ∈Range(A),

e−ε×Pr[A(X ′) =O]≤ Pr[A(X) =O]≤ eε×Pr[A(X ′) =O]

where the probability is taken over the randomness of A.

Intuitively, this guarantees that an adversary, provided with the output of

A, can draw almost the same conclusions about any individual no matter if this

individual is included in the input of A or not [75]. The following definition of

privacy loss can then be formally derived.

Definition 2 (Privacy loss). Let A be a privacy mechanism which assigns

a value O ∈ Range(A) to a dataset X ∈ X. The privacy loss of A with

datasets X ∈ X and X ′ ∈ X at output O ∈ Range(A) is a random variable

P(A,X,X ′,O) = log Pr[A(X)=O]
Pr[A(X ′)=O] where the probability is taken on the random-

ness of A.

A relaxation of DP is probabilistic-DP, or (ε,δ)-DP, where privacy

breaches may occur with very small probability.

2.1. Cryptography 37

Definition 3 ((ε,δ)-Differential Privacy [75]). A privacy mechanism A guar-

antees (ε,δ)-differential privacy if for any database X ∈X and X ′ ∈X, differing

on at most one record, and for any possible output S ⊆ Range(A),

Pr[A(X) ∈ S]≤ eε×Pr[A(X ′) ∈ S] + δ

or, equivalently,

Pr
O∼A(X)

[P(A,X,X ′,O)> ε]≤ δ.

This definition guarantees that every output of algorithm A is almost

equally likely (up to ε) on datasets differing in a single record except with

probability at most δ, preferably smaller than 1/|X|. Probabilistic-DP pro-

vides higher utilities in practice than ε-DP (Definition 1) at the cost of weaker

privacy guarantees.

A fundamental concept in DP is the global sensitivity of a function [75].

Definition 4 (Global Lp-sensitivity). For any function f : X→ Rd, the Lp-

sensitivity of f is ∆pf = maxX,X ′ ||f(X)−f(X ′)||p, for all X,X ′ differing in

at most one record, where || · ||p denotes the Lp-norm.

There are a few ways to achieve DP, including the Laplace mechanism and

the Gaussian mechanism. The Laplace mechanism (LPM) consists of adding

noise sampled from the Laplace distribution to the true output of a function.

Definition 5 (Laplace mechanism (LPM) [75]). For any function f : X→Rd,

LPM is defined as

LP(X) = f(X) + [Ŷ1(ŝ), . . . , Ŷd(ŝ)]

where Ŷi(ŝ) are i.i.d Laplace random variables with scale parameter ŝ= ∆1f/ε,

and ∆1f is the L1-sensitivity of f .

It can be proved that the above definition of LPM achieves ε-DP [75].

Instead, the Gaussian Mechanism (GM) consists of adding gaussian noise to

the true output of a function.

38 Chapter 2. Background

Definition 6 (Gaussian Mechanism (GM) [75]). For any function f : X→Rd,

GM is defined as

G(X) = f(X) + [N1(0,∆2f ·σ), . . . ,Nd(0,∆2f ·σ)]

where Ni(0,∆2f · σ) are i.i.d. normal random variables with zero mean and

variance (∆2f ·σ)2, and ∆2f is the L2-sensitivity of f .

The above definition of GM is (ε,δ)-DP if σ ≥ ∆2f/ε for c2 >

2ln(1.25)/δ [75].

The output of any randomized algorithm remains differentially private if

all inputs are already differentially private. This is often referred to as the

post-processing property of DP. Further, DP maintains composition.

Theorem 1 (Composition property of DP [145]). Let Ai each provide εi-

differential privacy. It holds:

1. A sequence of Ai(X) over the dataset X provides ∑i εi-differential pri-

vacy.

2. A sequence of Ai(Xi) over a set of disjoint1 datasets Xi provides max(εi)-

differential privacy.

In the case of probabilistic-DP, if each of A1, . . . ,Ak is (ε,δ)-DP, then their

k-fold adaptive composition2 is (kε,kδ)-DP. However, a tighter upper bound

can be derived on the privacy loss of the composite using a generic Chernoff

bound. In particular, it follows from Markov’s inequality that

Pr[P(A,X,X ′,O)≥ ε]≤ E[exp(λP(A,X,X ′,O))]/exp(λε)

for any output O ∈Range(A) and λ > 0. This implies that A is (ε,δ)-DP with

δ= minλ exp(βA(λ)−λε), where βA(λ) = maxX,X ′ logEO∼A(X)[exp(λP(A,X,X ′,O))]

is the log of the moment generating function of the privacy loss.
1Two datasets are disjoint if they have no common records.
2The output of Ai−1 is used as input to Ai, i.e., their executions are not necessarily

independent except their coin tosses.

2.1. Cryptography 39

This result is referred to as the moments accountant method, which we

formally define as follows:

Theorem 2 (Moments accountant (Abadi et al. [1])). Let βAi(λ) be

max
X,X ′

logEO∼A(X)[exp(λP(A,X,X ′,O))]

and A1:k the k-fold adaptive composition of A1,A2, . . . ,Ak. It holds:

1. βA1:k(λ)≤∑k
i=1βAi(λ)

2. A1:k is (ε,minλ exp(∑k
i=1βAi(λ)−λε))-differentially private

where A1,A2, . . . ,Ak use independent coin tosses.

Moreover, if an increase in the δ term is tolerated, the privacy parameter ε

degrades proportionally to
√
k, and the composite is (ε ·O(

√
k log(1/δ′)),kδ+

δ′)-differentially private for all k < 1/ε2 and δ′ > 0. This result is known as

the advanced composition property of differential privacy [71].

Finally, we introduce the following useful Lemma.

Lemma 1. Let G be the Gaussian Mechanism. It holds: βG(λ) = (λ2 +λ)/4σ2

Proof. Let f : X→R be a scalar function, f(X) = f(X ′)+∆1f , where ∆1f =

∆2f , and O = f(X) +x, where x∼N(0,σ). Let σ̂ = ∆1f ·σ Then, it holds:

P(A,X,X ′,O) = ln
(

Pr[G(X) =O]
Pr[G(X ′) =O]

)
=

= ln
(

Pr[f(X) +N(0, σ̂) =O]
Pr[f(X ′) +N(0, σ̂) =O]

)
= ln

(
exp(−x2/2σ̂2)

exp(−(x+ ∆1f)2/2σ̂2)

)
=

= ln
(

exp(−x2/2σ̂2)
exp(−(x+ ∆1f)2/2σ̂2)

)
=
(

∆1f

σ̂
· x
σ̂

)
+ 1

2

(
∆1f

σ̂

)2

Since x is drawn fromN(0, σ̂), P(A,X,X ′,O) follows a normal distribution with

mean (∆1f)2/2σ̂2 and standard deviation ∆1f/σ̂, whose moment generating

function is exp
(
(λ2 +λ)(∆1f)2/4σ̂2

)
. The claim follows from the definition of

β and σ̂. For the high-dimensional case when f : X→ Rd (d > 1), the proof is

similar to that of Theorem A.1 in [75].

40 Chapter 2. Background

Figure 2.1: Update procedure for the Count-Min Sketch.

Given βG(λ), the exact privacy cost ε (or δ) of the k-fold adaptive com-

position of G is computed based on Theorem 2.

2.2 Succinct Data Structures
This section introduces some succinct data structures, namely Count-Min

Sketch and Count Sketch, for efficient query operations. These “sketching”

data structures use minimal space to allow estimating the most frequent items

in a large set of data. They are used in a number of applications, e.g., tracking

Twitter’s most popular tweets, or counting the most visited pages of a website.

Count-Min Sketch [56] is a data structure that can be used to provide

a succinct sublinear-space representation of multi-sets. An interesting prop-

erty is that they enable aggregation of the multi-sets represented by two or

more sketches using a linear operation on the sketches themselves. Prior uses

of Count-Min Sketch include summarizing large amounts of frequency data

for sensing, networking, natural language processing, and database applica-

tions [62].

Definition 7 (Count-Min Sketch). A Count-Min Sketch with parameters (ε,δ)

is a two-dimensional array (table) X̃, with width w and depth d. Given pa-

rameters (ε,δ), set d = dlnT/δe and w = de/εe, where T is the number of

items to be counted. Each entry of the table is initialized to zero. Then, d

hash functions hj : {0,1}∗→ {0,1}w, are chosen uniformly at random from a

2.2. Succinct Data Structures 41

pairwise-independent family H.

Update Procedure. To update item i by a quantity ci, ci is added to one element

in each row, where the element in row j is determined by the hash function

hj . The update is denoted as (i, ci). More precisely, to update the count for

item i to ci ∈ N, for each row j of X̃, set:

X̃[j,hj(i)]← X̃[j,hj(i)] + ci

This procedure is illustrated in Figure 2.1.

Estimation Procedure. To estimate the count ĉi for item i, we take the mini-

mum of the estimates of ci from every row of X̃:

ĉi←min
j
X̃[j,hj(i)]

Error Upper Bound. Given estimate ĉi, it holds:

1. ci ≤ ĉi
2. ĉi ≤ ci+ ε

∑T
j=1 |cj | with probability 1− δ.

(where ci is the true counter).

Count Sketch [44] is a data structure which provides an estimate for an

item’s frequency in a stream. Count Sketch has the same update procedure as

Count-Min Sketch, but differs in the estimation. Specifically, given the table

X̃ built on the stream, the row estimate of ci (which is the counter of item i)

for row j is computed based on two buckets: X̃[i,hj(i)] and X̃[i,h′j(i)], where

h′j(i) is defined as:

h′j(i) :=


hj(i)−1 if hj(i) mod 2 = 0

hj(i) + 1 if hj(i) mod 2 = 1

The estimate of ci for row j is then(
X̃[j,hj(i)]− X̃[j,h′j(i)]

)
To estimate the count ĉi for item i, we take the sum of the estimates of ci from

every row of X:

ĉi← sum
j

(
X̃[j,hj(i)]− X̃[j,h′j(i)]

)

42 Chapter 2. Background

Both Count-Min and Count Sketch are linear: the element-wise sum of the

sketches representing two multi-sets yields the sketch of their union.

Note that, although we use (ε,δ) to denote parameters for both Count(-

Min) Sketch and differential privacy (see Section 2.1.3), it is clear from the

context which one it relates to.

2.3 Machine Learning
In this section, we review machine learning concepts used throughout the

dissertation.

2.3.1 Recommender systems

Recommender systems are used to predict the utility of a certain item

for a particular user, based on their previous ratings as well as those of other

“similar” users [180]. Consider a set of N users and a list of M items: for

each user, a rating can be associated to each item, based, e.g., on the user’s

explicit opinion about the item (e.g., 1 to 5 stars) or by implicitly deriving it

from purchase records or browser history.

Machine learning can be used to predict the expected rating of an unrated

item for a given user. The K-Nearest Neighbor (KNN) classification algorithm

finds the top-K nearest neighbors for a given item, so that ratings associated

with these are combined to predict unknown ratings. A variant of KNN is

called ItemKNN [185]. The algorithm is trained using an item-to-item simi-

larity matrix (correlation matrix), where each element expresses the similarity

between a pair of items, and the Cosine Similarity is computed between vectors

of items (e.g., user ratings for each item).

If ratings are binary values (e.g., viewed/not viewed), the Cosine Similar-

ity between items a and b is:

{Sim}ab = Cab√
Ca ·Cb

(2.1)

where Cab, Ca, and Cb denote, respectively, the number of people who rated

both a and b, a, and b. Given the similarity matrix, we can identify the nearest

2.3. Machine Learning 43

neighbors for each item as the items with the highest correlation values. The

final model then consists of the identity of the nearest neighbors and their

correlation values (or weights) which are used in the prediction process, i.e.,

the items that should be recommended.

Note that, with ItemKNN, given the item-to-item matrix, each user could

independently compare their ratings with the nearest neighbors of each item in

the model. Upon finding a match, the weight is added to the prediction score

for that item. The items are then ranked by their prediction scores and the

top K are taken as recommendations. Predicting user ratings or interests in

general has many applications especially in e-commerce systems (e.g. Amazon

Web store).

2.3.2 Time-series data prediction

Time-series data prediction can be performed, among others, using Ex-

ponential Weighted Moving Average (EWMA) models [192]. EWMA can pre-

dict future values based on past values weighted with exponentially decreasing

weights toward older values. Given a signal over time r(t), we indicate with

r̃(t+ 1) the predicted value of r(t+ 1) given the past observations, r(t′), at

time t′ ≤ t. Predicted signal r̃(t+ 1) is estimated as:

r̃(t+ 1) =
t∑

t′=1
α(1−α)t−t

′
r(t′)

where α ∈ (0,1) is the smoothing coefficient, and t′ = 1, . . . , t indicates the

training window, i.e., 1 corresponds to the oldest observation while t is the

most recent one.

2.3.3 Kernel k-means with random features

Clustering is the task of grouping a set of objects in such a way that objects

in the same group, or cluster, are more similar to each other than to those

in other groups. k-means is one of the most popular clustering algorithms.

Given a set of samples X = {x1,x2, . . . ,xN}, k-means linearly separates X

into k clusters C1,C2, . . . ,Ck (k ≤ N) so that it aims to minimize the error

44 Chapter 2. Background
∑k
i=1

∑
x∈Ci ||x− ci||

2
2, where ci = ∑

x∈Ci x/|Ci| is the centroid of cluster Ci.

Although this problem is NP-hard, there are efficient heuristic algorithms (such

as Lloyd’s algorithm) which iteratively refines clustering and converge quickly

to a local optimum. However, k-means can provide very inaccurate clustering

of linearly non-separable data, which are very common in practice.

To overcome this shortcoming, kernel k-means [187] first maps samples

from input space to a higher dimensional feature space through a non-linear

transformation Φ, then applies standard k-means on {Φ(x1),Φ(x2), . . . ,Φ(xN)}.

Hence, kernel k-means provides linear separators of clusters in feature space

which correspond to non-linear separators in input space. Kernel k-means

iteratively computes ||Φ(x)− c′i||22 for each sample x to decide which cluster a

sample belongs to, where c′i = ∑
x∈Ci Φ(x)/|Ci|. To do so, the inner product

〈Φ(x),Φ(y)〉 must be known for all x,y ∈ X. Since Φ(·) is hard to explicitly

compute due to its large, often infinite dimension, the kernel trick is applied;

〈Φ(x),Φ(y)〉 = κ(x,y), where κ is an easily computable kernel function. Still,

this approach requires evaluating κ for all pairs of samples and store the

results, which is not scalable for large datasets.

To make kernel k-means scalable, the kernel function can be approxi-

mated with low-dimensional explicit feature maps. In particular, the samples

are first mapped to a low-dimensional Euclidean inner product space using an

explicit random feature map z : Rm→ Rd so that 〈Φ(x),Φ(y)〉 ≈ 〈z(x), z(y)〉.

Then, standard k-means is applied on the low-dimensional mapped samples

{z(x1), z(x2), . . . , z(xN)} in Rd to approximate the result of the kernel k-means

with implicit feature map Φ and kernel κ. Although the approximation error

decreases as d increases, quite accurate approximations can be obtained even

for d < m. Explicit nonlinear feature maps have already been proposed for

shift-invariant kernels (e.g., generalized RBF kernels) [207] as well as polyno-

mial kernels [170] among others.

2.3. Machine Learning 45

2.3.4 Neural networks

In recent years, a family of machine learning models known as deep neural

networks (or deep learning) has become very popular for many machine learn-

ing tasks, especially related to computer vision and image recognition [186,

123]. Deep learning models are made of layers of non-linear mappings from

input to intermediate hidden states and, finally, to output. Each connection

between layers has a floating-point weight matrix as parameters. These weights

are updated during training. The topology of the connections between layers

is task-dependent and important for the ultimate accuracy of the model. To

find the optimal set of parameters that fits the training data, the training al-

gorithm optimizes the objective (loss) function L, which penalizes the model

when it outputs a wrong label on a data point.

There are many methods to optimize the objective function. Stochastic

gradient descent (SGD) and its variants (e.g., Adam optimizer [116]) are com-

monly used to train artificial neural networks. SGD is an iterative method

where at each step the optimizer receives a small batch of the training data

and updates the model parameters θ according to the direction of the negative

gradient of the objective function with respect to θ and scaled by the learn-

ing rate η ∈ R+. Training finishes when the model has converged to a local

minimum, where the gradient is close to zero.

Machine learning models include discriminative and generative ones.

Given a supervised learning task, and given the features of a data-point x ∈X

and the corresponding label y ∈ Y , discriminative models attempt to predict

y on future x by learning a discriminative function f from (x,y); the function

takes in input x and outputs the most likely label y. Discriminative models

are not able to “explain” how the data-points might have been generated. By

contrast, generative models describe how data is generated by learning the

joint probability distribution of p(X,Y), which gives a score to the configu-

ration determined together by pairs (x,y). Generative models based on deep

neural networks, such as Generative Adversarial Networks (GAN) [87] and

46 Chapter 2. Background

Variational Auto-encoders (VAE) [115] are considered as the state-of-the-art

for producing samples of realistic images [111].

We now briefly describe three generative neural networks models used in

this dissertation in Chapters 5 and 6.

Restricted Boltzmann Machines (RBM). A Restricted Boltzmann Ma-

chine (RBM) is a bipartite undirected graphical model composed of m visible

and n invisible (or latent) binary random variables denoted by, respectively,

v = (v1,v2, . . . ,vm) and h = (h1,h2, . . . ,hn). Visible variables represent the at-

tributes of x and their values are composed of records from X. Hidden vari-

ables capture the dependencies between different visible variables. As the

above model is a Markov random field with strictly positive joint probability

distribution p̃ over the model variables, p̃ can be represented as a Boltzmann

distribution defined as:

p̃(v,h) = 1
Z
e−E(v,h) (2.2)

where Z =∑
v,h e

−E(v,h) is the partition function, E(v,h) the energy function,

i.e., E(v,h) =−∑n
i=1

∑m
j=1 ·Wij ·hi ·vj−

∑m
j=1 bjvj−

∑n
i=1 cihi, with Wij being

real valued weights describing the inter-dependency between vj and hi, and

bj , ci real valued bias terms associated with the jth visible and ith hidden

units, respectively. Using matrix notation, E(v,h) = −v ·W ·h− b · v− c ·h,

where W = {Wi,j}, c = {ci}, and b = {bj}. The goal is to approximate the

true data generating distribution with the Boltzmann distribution p̃, given in

Eq. (2.2). To this end, we train the RBM model on dataset X to compute

parameters (W,b,c).

There are a few algorithms to train RBMs, that approximate or relate to

gradient descent on the log-loss of the data. If θ = (W,b,c), then we want to

minimize the loss function L(X;θ) = −∏x∈X p̃(x|θ) given dataset X, where

x ∈ {0,1}m is a record from X and p̃ is the Boltzmann distribution defined

in Eq. (2.2). The model parameters are updated until the log-loss converges

using Persistent Contrastive Divergence [199].

2.3. Machine Learning 47

Variational Autoencoder (VAE). A variational autoencoder [115] consists

of two neural networks (an encoder and a decoder), and a loss function. The

encoder compresses data into a latent space z while the decoder reconstructs

the data given the hidden representation. Let x be a random vector of m

observed variables, which are either discrete or continuous. Let z be a random

vector of n latent continuous variables. The probability distribution between

x and z assumes the form pθ(x,z) = pθ(z)pθ(x | z), where θ indicates that p

is parametrized by θ. Also, let qφ(z | x) be a recognition model whose goal

is to approximate the true and intractable posterior distribution pθ(z | x).

We can then define a lower-bound on the log-loss of x as follows: L(x;θ) =

DKL(qφ(z | x) || pθ(z))−Eqφ(z|x)[logpθ(x | z)]. The first term pushes qφ(z | x)

to be similar to pθ(z) ensuring that, while training, VAE learns a decoder that,

at generation time, will be able to invert samples from the prior distribution

such they look just like the training data. The second term can be seen as a

form of reconstruction cost, and needs to be approximated by sampling from

qφ(z | x).

In VAEs, we propagate the gradient signal through the sampling process

and through qφ(z | x) using the reparametrization trick. This is done by making

z be a deterministic function of φ and some noise ξ, i.e., z = f(φ,ξ). For

instance, sampling from a normal distribution can be done like z = µ+ σξ,

where ξ ∼ N(0, I). The reparametrization trick can be viewed as an efficient

way of adapting qφ(z | x) to help improve the reconstruction. We train the

variational autoencoder using stochastic gradient descent to optimize the loss

with respect to the parameters of the encoder and decoder θ and φ.

Generative Adversarial Network (GAN). GANs [87] are neural networks

trained in an adversarial manner to generate data mimicking some distribution.

The main intuition is to have two competing neural network models. One

model, the generator, takes noise as input and generates samples. The other

model, the discriminator, receives samples from both the generator and the

training data, and has to be able to distinguish between the two sources.

48 Chapter 2. Background

Figure 2.2: Generative Adversarial Network (GAN).

The two networks play a continuous game where the generator is learning to

produce more and more realistic samples, and the discriminator is learning

to get better and better at distinguishing generated data from real data, as

depicted in Figure 2.2.

More formally, to learn the generator’s output distribution over data-

points x, we define a prior on input noise variables pz(z), then represent a

mapping to data space as G(z;θg), where G is a generative deep neural network

with parameters θg. We also define a discriminator D(x;θd) that outputs

D(x) ∈ [0,1], representing the probability that x was taken from the training

set rather than from the generator G. D is trained to maximize the probability

of assigning the correct label to both real training examples and fake samples

from G. We simultaneously train G to minimize log(1−D(G(z))). The final

optimization problem solved by the two networks D and G follows a two-player

minimax game as:

min
G

max
D

Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))]

First, gradients of D are computed to discriminate fake samples from training

data, thenG is updated to generate samples that are more likely to be classified

as data. After several steps of training, if G and D have enough capacity and

a Nash equilibrium is achieved, they will reach a point at which both cannot

improve [87].

Larsen et al. [122] combine VAEs and GANs into an unsupervised gener-

ative model that simultaneously learns to encode and generate new samples,

which contain more details, sampled from the training data-points.

2.3. Machine Learning 49

Figure 2.3: Collaborative Learning.

Recently, Lucic et al. [135] show that, despite a large number of proposed

changes to the original GAN model [141, 25, 118, 12, 90], it is still difficult to

assess if one performs better than another. They also show that the original

GAN performs equally well against other state-of-the-art GANs, concluding

that any improvements are due to computational budgets and hyper-parameter

tuning, rather than scientific breakthroughs.

2.3.5 Collaborative learning

Training a deep neural network on a large dataset can take long time.

A common approach to scale deep learning [51, 63] is to partition the train-

ing dataset, concurrently train separate models on each subset, and exchange

parameters via a parameter server which stores the global set of all model

parameters (see Figure 2.3). During training, each local model pulls the pa-

rameters from this server, calculates the updates based on its current batch

of training data, then pushes these updates back to the server, which updates

the global parameters.

Collaborative learning may involve participants who want to hide their

training data from each other. We review two architectures for privacy-

preserving collaborative learning based on, respectively, [190] and [143].

Parameter server with synchronized gradient updates. We con-

sider collaborative learning with synchronized gradient updates, as proposed

50 Chapter 2. Background

Algorithm 1: Parameter server with synchronized SGD

1 Server executes:

2 Initialize θ0

3 for t= 1 to T do

4 for each client k do

5 gkt ←ClientUpdate(θt−1)

6 θt← θt−1−η
∑
k g

k
t . synchronized gradient updates

7

8 ClientUpdate(θ):

9 Select a batch B from client’s data

10 return local gradients ∇L(B;θ)

in [190]: see Algorithm 1. In each iteration of training, the participants down-

load the global model from the parameter server. Each participant then locally

computes gradient updates based on one batch of his training data and sends

the updates to the server. The server waits for the gradient updates from all

participants and then applies the aggregated updates to the global model using

stochastic gradient descent (SGD).

Federated learning with model averaging. We also consider the federated

learning framework proposed in [143]: see Algorithm 2. The parameter C

controls the fraction of the K participants that update the model in round t.

In each round, the k-th participant locally takes several steps of SGD on

the current model using his entire local training dataset of size nk (i.e., the

globally visible updates are based not on batches but on participants’ entire

datasets). In the algorithm description, n corresponds to the total size of the

training data, i.e., the sum of all nk. Each participant submits the resulting

model to the server, which computes a weighted average of the models. The

server evaluates the resulting joint model on a held-out dataset and stops

training when performance stops improving.

The convergence rate of both collaborative learning approaches heavily

2.3. Machine Learning 51

Algorithm 2: Federated learning with model averaging

1 Server executes:

2 Initialize θ0

3 m←max(C ·K,1)

4 for t= 1 to T do

5 St← (random set of m clients)

6 for each client k ∈ St do

7 θkt ←ClientUpdate(θt−1)

8 θt←
∑
k
nk

n θ
k
t . averaging local models

9

10 ClientUpdate(θ):

11 for each local iteration do

12 for each batch B in client’s split do

13 θ← θ−η∇L(B;θ)

14 return local model θ

depends on the specific learning task and the hyper-parameters (e.g., number

of participants, batch size, etc.).

52 Chapter 2. Background

Chapter 3

Related Work

In this chapter, we discuss prior work on privacy-friendly data processing,

focusing on private statistics and privacy in machine learning.

3.1 Private Statistics
This section reviews prior work on privacy-preserving techniques applied

to data aggregation, as well as efficient data structures for succinct represen-

tation.

3.1.1 Privacy-preserving aggregation

Private aggregation schemes like ANONIZE [97] and PrivStats [173] rely

on anonymizing networks, such as Tor [65], to protect privacy against net-

work adversaries. Unfortunately, Tor-based schemes are vulnerable to traffic-

analysis attacks [155]. Dining Cryptographers anonymizing networks, or DC-

nets, are instead used in [58, 60, 61]. However, DC-nets require expensive

operations at the servers side.

Other schemes [120, 39, 107, 59] provide strong privacy guarantees via

secret-sharing based methods. In particular, Kursawe et al. [120] introduce

a few cryptographic constructions to aggregate energy consumptions in the

context of smart metering, relying on Diffie-Hellman, bilinear maps, and a

“low overhead” protocol where meters’ encryption keys sum up to zero. Our

schemes for the private recommender system and location prediction – pre-

sented in Chapter 4 – rely on a protocol inspired by [120]’s “low overhead”

54 Chapter 3. Related Work

protocol, but perform private aggregation using succinct data representation

rather than the raw inputs. Using Count-Min Sketch [56], we reduce com-

putation and communication overhead incurred by each user from linear to

logarithmic in the size of the input. We also show how to recover from node

failures, i.e., in our schemes, the aggregator can still retrieve the statistics (and

train models) even when a subset of users go offline or fail to report data.

Then, Castelluccia et al. [39] propose a new homomorphic encryption to

allow intermediate wireless sensor nodes to aggregate encrypted data gathered

from other nodes. Jawurek et al. [107] propose a privacy-friendly aggregation

scheme with robustness against missing user inputs, by including additional

authorities that facilitate the protocol but do not learn any secrets or inputs.

However, at least one of the authorities has to be honest, i.e., if all collude, the

protocol does not provide any privacy guarantee. Corrigan-Gibbs et al. [59]

propose Prio, in which users distribute their trust across non-colluding servers.

Their proposal relies on secret-shared non-interactive proofs (SNIPs) to allow

user inputs to be validated.

A combination of homomorphic encryption and differential privacy has

been explored by Chen et al. [48], allowing third parties to gather web analyt-

ics. Users encrypt their data using the data aggregator public key and send

them to a proxy, who adds noise to the cipher-texts and forwards the results

to the data aggregator. The latter computes the aggregates after decrypting

each individual contribution. However, this scheme introduces a large overhead

both in terms of communication (one KB per single bit of user data) and com-

putation (one public key operation per single bit). In the same line of work,

Akkus et al. [7] propose a system providing differential privacy guarantees.

Their scheme scales better than [48] as it requires users to encrypt fewer bits

per query, but still relies on expensive public-key crypto operations. In [47],

the authors propose a scheme based on a similar trust model as [48] but with

an enhanced scalability by using simple exclusive-or (XOR) operations rather

than public key operations. However, their proposal still relies on honest-but-

3.1. Private Statistics 55

curious servers that do not collude with each other. Shi et al. [188] combine

private aggregation with differential privacy supporting the aggregation of en-

crypted perturbed readings reported by the meters. Individual amounts of

random noise cancel each other out during aggregation, except for a specific

amount that guarantees computational differential privacy. Their protocol is

also so that encryption keys sum up to zero, but requires solving a discrete

logarithm and the presence of a trusted dealer. Chan et al. [42] provides

fault tolerance by extending [188]’s protocol, however, with a poly-logarithmic

penalty.

Erlingsson et al. [80] introduce RAPPOR, which enables the collection of

browser statistics on values and strings provided by a large number of clients

(e.g. homepage settings, running processes, etc.), including categories, frequen-

cies, and histograms. RAPPOR supports privacy-preserving data-collection

mechanism by relying on randomized responses via input perturbation, aim-

ing to guarantee local differential privacy for individual reports. Then, Fanti

et al. [82] extend RAPPOR by providing a decoding mechanism that enables

the estimation of values which are not part of the initial dictionary. However,

RAPPOR requires millions of users in order to obtain approximate answers to

queries.

In a different line of work, Burkhart et al. [35] rely on optimized secure

multiparty computation (MPC) to allow secure summation tasks, although

incurring high bandwidth and computational costs.

Finally, other proposals [4, 106, 77, 30] leverage pairwise additive masking

with stream ciphers. Among these works, Elahi et al. [77] present a protocol for

privately computing mean statistics on Tor traffic. They introduce two ad-hoc

protocols relying, respectively, on secret sharing and distributed decryption.

By contrast, our application for gathering private statistics for Tor (presented

in Section 4.3) enables the computation of the median statistics on traffic

generated by Tor hidden services – which constituted an open problem [88] –

by relying on additively homomorphic encryption and differential privacy.

56 Chapter 3. Related Work

3.1.2 Privacy and succinct data representation

Closely related to our contributions presented in Chapter 4 is prior work

on privacy-preserving data structures. Bianchi et al [26] formally investigate

the privacy guarantees provided by Bloom filters [28]. In particular, they

demonstrate that, depending on the Bloom filter parameters, the same level

of plausible deniability protection cannot be guaranteed for all elements in

the filter. Mir et al. [151] present an efficient scheme guaranteeing differential

privacy of data analyses (even when the internal memory of the algorithm

may be compromised), using a data structure similar to the Count-Min Sketch

to estimate heavy hitters. Work in [100, 41] address the problem of finding

heavy hitters’ histograms while preserving privacy using a differentially private

protocol. Then, [18] addresses the case where individual users randomize their

own data and then send differentially private reports to an untrusted server

handling reports aggregation.

Other proposals combine differential privacy and Count-Min Sketch to

obtain aggregate information about vehicle traffic [153] as well as summaries

of sparse databases [57]. Ashok et al. [14] present a privacy-preserving proto-

col for computing the set-union cardinality among several parties using Bloom

filters. However, their proposal is insecure, as shown by [200], who also in-

troduces a novel Bloom filter based protocol for set-union and set-intersection

cardinality. Lin et al. [130] improve the performance of [158]’s protocol for

private proximity testing by reducing the problem to simple equality testing

(instead of the more expensive private-preserving threshold set intersection).

They use a concise representation of “location tags”, by generating, via shin-

gling, concise sketches—in their context, short strings representing the set of

broadcast messages received. Recently, Alaggan et al. [9] propose a sanitiza-

tion mechanism for approximate distinct counting for Wi-Fi analytics based

on perturbed Bloom filters. Their work rely on a variant of differential pri-

vacy called Pan-Privacy [73] to expand the range of applications enabled by

privacy-preserving Bloom filters [8, 205].

3.2. Privacy in Machine Learning 57

To the best of our knowledge, our work, presented in Chapter 4, is the first

to show how to combine Count-Min Sketch and privacy-friendly data aggre-

gation to build a private estimated model used for recommendations as well

as prediction of future locations. Also, our scheme for Tor hidden services

statistics, which combines Count Sketch, additively homomorphic threshold

decryption, and differential privacy, is the first to tackle the problem of effi-

ciently computing the median statistics.

3.2 Privacy in Machine Learning
Over the past few years, privacy in machine learning and data mining

has received a lot of attention from the research community. In this section,

we review prior work on privacy-preserving mechanisms applied to machine

learning along with inference attacks against machine learning.

3.2.1 Learning with privacy

Privacy-enhancing tools based on secure multi-party computation (MPC)

and homomorphic encryption have been proposed to securely train supervised

machine learning models, such as matrix factorization [160], linear classi-

fiers [31, 89], decision trees [32, 131], linear regressors [68], and neural net-

works [30, 67, 133, 152].

Among these works, MPC has been used to build privacy-preserving neu-

ral networks in a distributed fashion. For instance, SecureML [152] starts with

the data owners (clients) distributing their private training inputs among two

non-colluding servers during the setup phase; the two servers then use MPC

to train a global model on the clients’ encrypted joint data. Then, Bonawitz

et al. [30] use secure multi-party aggregation techniques, tailored for feder-

ated learning, to let participants encrypt their updates so that the central

parameter server only recovers the sum of the updates. In Chapter 7, we show

that inference attacks can be successful even if the adversary only observes

aggregated updates.

Due to its generality, differential privacy has served as a building block

58 Chapter 3. Related Work

in several recent efforts at the intersection of privacy and deep learning [1,

171, 172, 190]. In general, the majority of privacy-preserving learning schemes

focus on convex optimization problems [19, 46, 211], whereas, training neural

networks typically requires to optimize non-convex objective functions – as

with Restricted Boltzmann Machine (RBM) [38] and Variational Autoencoder

(VAE) [115] – which is usually done through the application of Stochastic

Gradient Descent (SGD) with poor theoretical guarantees. For instance, Wu

et al. [211] propose a private technique which runs SGD for convex cases for a

constant number of iterations and only adds noise to the final output.

In the non-convex setting, Shokri and Shmatikov [190] support distributed

training of deep learning networks in a privacy-preserving way. Specifically,

their system relies on the input of independent entities which aim to collabora-

tively build a machine learning model without sharing their training data. To

this end, they selectively share subsets of noisy model parameters during train-

ing. However, their approach incurs high levels of privacy loss per entity, i.e.,

the ε parameter is in the order of thousands, using the strong composition the-

orem [71]. Then, Abadi et al. [1] introduce an algorithm for non-convex deep

learning classifiers with strong differential privacy guarantees. They present

a privacy accounting method, called the moments accountant, which guar-

antees a tighter bound of the privacy loss for the composition of multiple

gaussian mechanisms when compared to the strong composition theorem [71].

In Chapter 5, we rely on the moments accountant to measure privacy loss,

but we train generative models and with an improved gradient descent, where

the noise is carefully adjusted and injected in each iteration. Other schemes

only focus on learning private autoencoders [171] and convolutional deep be-

lief networks [172] by perturbing their loss functions through the functional

mechanism [224].

In the distributed setting, recent proposals [144, 85] tackle the problem

of training deep learning models with user-level differential privacy guarantees

for the tasks of training language models [144] and digits classification [85].

3.2. Privacy in Machine Learning 59

As opposed to record-level differential privacy (as done in [1]), in user-level

differential privacy the aim is to hide whether a client participated during

decentralized training. However, these approaches require a large number of

users (in the order of thousands) for the training to converge and achieve an

acceptable trade-off between privacy and model performance.

In [168], Pathak et al. present a differentially private global classifier

hosted by a trusted third-party and based on locally trained classifiers held by

separate, mutually distrusting parties. Hamm et al. [91] use knowledge transfer

to combine a collection of models trained on individual devices into a single

model, with differential privacy guarantees. Transfer learning approaches, in

combination with improved differentially private techniques tailored for deep

learning [1], have also been applied in [167, 166]. These privately train a

“student” model by transferring the knowledge of an ensemble of “teachers”

trained on the disjoint subsets of training data, through noisy aggregation.

Finally, few proposals attempt to learn flexible representations of per-

sonal users’ data via adversarial machine learning [109, 139, 76], transfer

learning [163] or Denoising Autoencoders [140], aiming to provide only desired

features to a third-party analytics service, while protecting against undesired

inference of sensitive tasks (e.g., person identification). However, it is not

clear whether these proposals can be applied to the federated training of deep

learning networks.

3.2.2 Private data release

In the private data release problem, a database owner wishes to release

a “sanitized” version of a database, which can be used for data-mining and

preserves the privacy of the individuals in the database at the same time.

To this end, several techniques for data anonymization have been proposed

over the years, including k-anonymity [196] and the related mechanisms of l-

diversity [137] and t-closeness [128]. These paradigms aim to protect data by

generalizing and suppressing certain identifying attributes, but they cannot

be applied to high-dimensional datasets [6, 34]. In fact, Brickell et al. [34]

60 Chapter 3. Related Work

show that modest privacy gains require almost complete destruction of the

data-mining utility.

Therefore, rather than pursuing input sanitization, prior work has pro-

posed techniques to produce plausible synthetic records with strong privacy

guarantees, e.g., focusing on differentially private release of data [2, 43, 49,

105, 138, 142, 210, 93]. Alas, these can often support only the release of suc-

cinct data representations, such as histograms or contingency tables. In par-

ticular, Hardt et al. [93] introduce MWEM, a differentially private algorithm

producing synthetic datasets supporting any set of linear queries. MWEM re-

lies on the Exponential Mechanism (EM [146]) to select only the queries most

informative to the Multiplicative Weights algorithm [92], which iteratively im-

proves an approximate version of the dataset to better resemble the real one.

Instead, several mechanisms protect privacy by adding noise directly to a gen-

erative model [33, 127, 132, 225]. In Chapter 5, we follow this approach, while,

in a first-of-its-kind attempt, focusing on building private generative machine

learning models based on neural networks.

Other approaches [27, 179, 178] generate data records first, and then at-

tempt to test their privacy guarantees, i.e., decoupling the generative model

from the privacy mechanism. For instance, Bindschaedler et al. [27] rely on

graphical probabilistic models to learn a transformation between real data

points (seeds) into synthetic ones. Then, a privacy test filters synthetic data

points using a plausible deniability criterion. By contrast, in Chapter 5, we

attempt to achieve privacy during the training of the model, thus avoiding

eventual high sample rejection rates due to privacy tests.

Recent proposals [21, 202] focus on training differentially private Gener-

ative Adversarial Networks (GANs) [87]. Beaulieu et al. [21] apply the noisy

gradient descent from [1] to train the discriminator of a GAN under differential

privacy. The resulting model is then used to generate synthetic subjects based

on the population of clinical trial data. Similarly, Triastcyn et al. [202] per-

turb the output of the discriminator of a GAN by clipping the L2 norm of the

3.2. Privacy in Machine Learning 61

second-to-last layer of the network and then adding Gaussian noise. However,

their approach only provides approximate bounds on the expected privacy

loss for the generated dataset, thus failing to achieve strict differential privacy

guarantees. Moreover, differentially private GANs proposals exacerbate the

existing weaknesses of GANs, such as mode collapse and training instability,

due to the injection of additional noise into the model during training.

Privacy-aware adversarial training of neural networks, seeking to attain

an information-theoretically optimal tradeoff between minimizing distortion

of useful data and hiding sensitive information, has also been applied in [101,

203]. However, unlike differential privacy, this approach requires knowledge of

the underlying statistical distribution of the data.

Prior work has also attempted to combine clustering with deep learning,

albeit with no privacy guarantees. Some proposals [227, 103, 216] jointly

train an autoencoder neural network with a clustering algorithm, and use the

internal representation provided by the autoencoder, i.e., the encoder output,

as features for clustering. A different training method is followed in [126, 66,

214], where autoencoders are initially pretrained, and then fine tuned using

the cluster assignment loss, while [99, 220] combine clustering with standard

convolutional neural networks (CNNs) for representation learning of images.

Finally, differentially private clustering with k-means has been addressed

in prior work [195], however, aiming to find linearly separable clusters and

add noise which is proportional to the data dimension or the L1-norm of

data records. Kernel k-means clustering with random Fourier features (RFF)

has been considered in [53], albeit without any privacy guarantee. Our work

in Chapter 5 somewhat combines [53] and [29], and applies DP k-means on

Fourier features to ultimately achieve better accuracy than [29].

3.2.3 Membership inference attacks

Membership inference is the problem of deciding, given a data point,

whether or not it was included in the training dataset. Prior work demon-

strated membership inference from aggregate statistics, e.g., in the context

62 Chapter 3. Related Work

of genomic studies [98, 17], location time-series [174], or noisy statistics in

general [74].

Membership inference against black-box machine learning models has

been studied in [189, 222, 134]. Shokri et al. [189] demonstrate membership

inference against black-box supervised models. Their approach exploits dif-

ferences in the model’s response to inputs that were or were not seen during

training. For each class of the targeted black-box model, they train a shadow

model, with the same machine learning technique. By contrast, our member-

ship attacks, presented in Chapter 6, target generative models and rely on

GANs to provide a general framework for measuring the information leakage.

Membership inference on generative models is much more challenging than on

discriminative models: in the former, the attacker cannot exploit confidence

values on inputs belonging to the same classes, and therefore it is more diffi-

cult to detect overfitting and mount the attack. In fact, detecting overfitting in

generative models is regarded as one of the most important research problems

in machine learning [212].

Then, Long et al. [134] and Yeom et al. [222] study the relationship be-

tween overfitting and information leakage. In particular, Yeom et al. [222]

assume that the adversary knows the distribution from which the training set

was drawn and its size, and that the adversary colludes with the training algo-

rithm. Their attacks are close in performance to Shokri et al.’s [189], and show

that, besides overfitting, the influence of target attributes on model’s outputs

also correlates with successful attacks.

Truex et al. [204] extend [189] to a more general setting and show how

membership inference attacks are data-driven and largely transferable. They

also show that an adversary who participates in collaborative learning, with

access to individual model updates from all other honest participants, can

boost membership inference performance compared to a centralized model.

To the best of our knowledge, membership inference in generative models

has not been studied before.

3.2. Privacy in Machine Learning 63

3.2.4 Other attacks on machine learning models

Attacks targeting distributed recommender systems [36] have focused on

inferring which inputs cause output changes by looking at model’s temporal

patterns.

Model inversion techniques infer class features and/or construct class rep-

resentatives if the adversary has black-box [83, 84] or white-box [15] access to

a classifier model.

In particular, Fredrikson et al. [84] show how an attacker can rely on out-

puts from a classifier to infer sensitive features used as inputs to the model

itself: given the model and some demographic information about a patient

whose records are used for training, an attacker might predict sensitive at-

tributes of the patient.

These techniques are sometimes described as violating privacy of the train-

ing data, even though the inferred features characterize an entire class and not

specifically the training data, except in the cases of pathological overfitting

where the training sample constitutes the entire membership of the class.

Then, Hitaj et al. [96] show that a participant in collaborative deep learn-

ing can use GANs to construct class representatives. This technique has been

evaluated only on models where all members of the same class are visually

similar (handwritten digits and faces). Thus, there is no evidence that it pro-

duces actual training images or can distinguish a training image and another

image from the same class. In fact, class members produced by model inversion

and GANs are similar to the training inputs only if all members of the class

are similar, as is the case for MNIST (the dataset of handwritten digit used

in [96]) and facial recognition. This does not violate privacy of the training

data; it simply shows that machine learning works as it should. A trained

classifier reveals the input features characteristic of each class, thus enabling

the adversary to sample from the class population. For instance, Figure 3.1

shows GAN-constructed images for the gender classification task on the LFW

dataset, which is one of our experiments (see Section 7.2). These images show

64 Chapter 3. Related Work

Figure 3.1: Samples from a GAN attack on a gender classification model where

the class is “female”.

a generic female face, but there is no way to tell from them whether an image

of a specific female was used in training or not.

Therefore, the informal property violated by the attacks of [83, 84, 15, 96]

is: “a classifier should prevent users from generating an input that belongs to

a particular class or even learning what such an input looks like”. However, it

is not clear why this property is desirable or whether it is achievable.

Aono et al. [11] show that, in the collaborative deep learning protocol

of [190], an honest-but-curious server can partially recover participants’ data

points from the shared gradient updates in a greatly simplified setting where

the batch consists of a single data point. Furthermore, the technique is evalu-

ated only on MNIST where, as mentioned above, all class members are visually

similar. Again, it is not clear if the technique can distinguish a training image

and another image from the same MNIST class.

Song et al. [193] engineer a machine learning model that memorizes the

training data, which can then be extracted with black-box access to the model,

without affecting the accuracy of the model on its primary task. Carlini et

al. [37] show that deep learning-based generative sequence models trained on

text data can unintentionally memorize specific training inputs, which can then

be extracted with black-box access. Even though the models are trained on

text, extraction is demonstrated only for sequences of digits (artificially intro-

duced into the text), which are not affected by the relative word frequencies

in the language model.

3.2. Privacy in Machine Learning 65

Finally, other attacks focus on model stealing [201, 209, 162]. A stolen

model can reveal training data points that are explicitly incorporated or oth-

erwise memorized in the model.

66 Chapter 3. Related Work

Chapter 4

Efficient Privacy-Preserving

Computation of Statistics

As discussed in Section 3.1, prior work has proposed a few cryptographic

tools for privacy-enhanced computation that could be used for private collec-

tion of statistics. For instance, by relying on homomorphic encryption and/or

secret sharing, an untrusted aggregator can receive encrypted readings from

users and only decrypt their sum [120, 77, 188]. However, these require users

to perform a number of cryptographic operations, and transmit a number of ci-

phertexts, linear in the size of their inputs, which makes it impractical for some

scenarios in which inputs to be aggregated are quite large. This motivates the

need for efficient and scalable techniques allowing providers to privately gather

statistics, and to use such statistics to train models and facilitate predictions.

In this chapter, we present efficient mechanisms that combine traditional

linear aggregation with succinct data structures, for efficiency, and, when

needed, differential privacy to limit information leakage. Specifically, we show

how to use our techniques to instantiate real-world privacy-friendly systems,

supporting recommendations for media streaming services, prediction of user

locations, and computation of median statistics for Tor hidden services.

68 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

4.1 Private Recommender Systems For Stream-

ing Services
Media streaming services are becoming increasingly popular as numer-

ous dedicated providers (e.g., Netflix, Amazon, Hulu) as well as “traditional”

broadcasting services (e.g., BBC, CNN, Al-Jazeera) offer digital access to

TV shows, movies, documentaries, and news. One of the providers’ goals

is often continuous user engagement, thus, new content should periodically

be suggested to users based on their interests. These recommendations are

usually provided by means of recommender systems [95, 5] like ItemKNN

(cf. Section 2.3.1), which typically require the full availability of users’ rat-

ings, whereas, we focus on a model where a provider like the BBC provides

recommendations to its users, e.g., on iPlayer, without tracking their prefer-

ences and viewings.

4.1.1 Overview

We present a novel privacy-friendly recommender system where the

ItemKNN algorithm is trained using only aggregate statistics. Aiming to build

a global matrix of co-views (i.e., pairs of programs watched by the same user)

in a privacy-preserving way, we rely on (i) private data aggregation based

on secret sharing (inspired by the “low overhead protocol” in [120]), and (ii)

the Count-Min Sketch (see Section 2.2) data structure to reduce the com-

putation/communication overhead, trading off an upper-bounded error with

increased efficiency.

Recommendations are derived, based on ItemKNN, as follows: users’

interests are modeled as a (symmetric) item-to-item matrix I = {0,1}M×M ,

where Iab is set to 1 if the user has watched both programs a and b and to 0

otherwise. Iaa is set to 1 if the user has watched the program a. The Cosine

Similarity {Sim}ab between programs a and b can be computed from item-

to-item matrices (see Equation 2.1 in Chapter 2). The Cosine Similarity is

then used by each user to derive personalized recommendations as described

4.1. Private Recommender Systems For Streaming Services 69

in Section 2.3.1.

System model. Our system involves a tally (e.g., the BBC) and a set of

users, and no other trusted/semi-trusted authority:

1. Users, possibly organized in groups, compute their (secret) blinding fac-

tors, based on the public keys of the other users, in such a way that

they all sum up to zero. They encrypt their local Count-Min Sketch

entries (representing their co-view matrix) using these blinding factors,

and send the resulting ciphertexts to the tally.

2. The tally receives the encrypted Count-Min Sketch from each user,

aggregates the encrypted counts, and decrypts the aggregates. These

are broadcast back to the users, who use them to recover an estimate

of the global similarity matrix and derive personalized ItemKNN-based

recommendations.

Notation. In the rest of this section, we denote with N the number of users,

with M the total number of items, and with L = d ·w the number of items

in a Count-Min Sketch table X̃. Let G be a cyclic group of prime order q

for which the Computational Diffie-Hellman problem (CDH) is hard and g be

the generator of the same group. H : {0,1}∗ → Zq denotes a cryptographic

hash function mapping strings of arbitrary length to integers in Zq. Finally,

“||” denotes the concatenation operator and a ∈r A means that a is sampled

at random from A. We assume the system runs on input public parameters

G,g,q, where g generates a group of order q in G.

4.1.2 Protocol
We now present the details of our proposed protocol. Its cryptographic

layer is also summarized in Figure 4.1.

Setup. Each user Ui (i ∈ [1,N]) generates a private key xi ∈r G, and com-

putes and publishes public key yi = gxi mod q. Public keys of all users are

distributed to each other, using a public bulletin board or the tally itself.

70 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

User Ui (i ∈ [1,N]) Tally

(1)xi ∈r G,yi := gxi mod q yi -

(2) ∀`= 1, . . . ,L, ki` := ∑
j 6=i

H(yxij ||`||s) · (−1)i>j mod 232 �
{yj}j∈[1,N]

∀`= 1, . . . ,L, bi` := X̃i` +ki` mod 232 {bi`}
L
`=1- (3) Fault recovery (if needed)

� Uon

(4) ∀` k′i` := ∑
j 6=i,
j 6∈Uon

H(yxij ||`||s) · (−1)i>j mod 232

{
k′i`

}L
`=1- (5) ∀`= 1, . . . ,L, C ′` :=

(∑
i∈Uon

bi`−
∑

i∈Uon
k′i`

)
mod 232

Figure 4.1: Cryptographic layer of our private recommender system for online

streaming services. At setup (1), users compute their secret share and send their

public key to the tally, who broadcasts them to the other users. During the en-

cryption phase (2), each user computes the blinding factors, encrypts their Count-

Min Sketch and sends it to the tally. In case not all users have sent the data, the

tally broadcasts Uon, the subset of users that did (3). These compute new blind-

ing factors and send them to the tally (4). Aggregate sketches are then recovered

by the tally (5).

As discussed later in this section, users might be organized in groups in

order to facilitate aggregation. To ease presentation, we discuss the protocol

steps for a single group of users, as combining aggregates from different groups

is trivial and can be done, in the clear, by the tally.

Count-Min Sketch construction. We assume each user Ui holds an input

vector of data points I = {Ic ∈ N, c= 1, . . . ,T}, which represents Ui’s co-view

matrix (i.e., T = M ·M/2). First, Ui initializes a Count-Min Sketch table X̃i

with all zero entries. In the following, we represent Ui’s Count-Min Sketch

table X̃i ∈ Nd×w as a vector of length L = d ·w. Then, Ui encodes I in the

Count-Min Sketch using the update procedure described in Section 2.2, where

the following pairwise-independent hash function is employed:

h(x) = ((ax+ b) mod p) mod w

for a 6= 0, b random integers modulo a random prime p. At the end of this step,

Ui has built a Count-Min Sketch table X̃i = {X̃i`}L`=1 (with L = d ·w as per

Definition 7).

4.1. Private Recommender Systems For Streaming Services 71

Encryption. To participate in the privacy-preserving sketch aggregation,

each user Ui first needs to generate blinding factors. At round s, for each

`= 1, . . . ,L, user Ui computes:

ki` =
N∑
j=1
j 6=i

H(yxij ||`||s) · (−1)i>j mod q

where

(−1)i>j :=


−1 if i > j

1 otherwise

Note that the sum of all ki` ’s equals to zero:
N∑
i=1

ki` =
N∑
i=1

N∑
j=1
j 6=i

H(yxij ||`||s) · (−1)i>j = 0

Then, for each entry X̃i` , Ui encrypts X̃i` as bi` = X̃i` + ki` mod 232, as only

32 bits of bi` are enough for our application, and sends the resulting ciphertext

to the tally.

Aggregation. The tally receives the ciphertexts from the N users and

(obliviously) aggregates the sketches. Specifically, for `= 1, . . . ,L, it computes:

C` =
N∑
i=1

bi` =
N∑
i=1

ki` +
N∑
i=1

X̃i` =
N∑
i=1

X̃i` mod 232

where C` denotes the `-th item in the aggregate Count-Min Sketch table.

{C`}L`=1, are broadcast back to the users (but can obviously be used locally

at the tally too), who use them to recover an estimate of the global matrix

and derive personalized recommendations via the ItemKNN algorithm.

Fault tolerance. If, during the aggregation phase, only a subset of users

report their values bi` to the tally, the sum of the ki` ’s is no longer equal to

zero and the aggregate items C` cannot be decrypted. However, it is possible

to recover as follows: Let Uon denote the list of users who have submitted the

data in the aggregation phase. The tally sends Uon to each Ui ∈ Uon. Then,

Ui computes, for each `= 1, . . . ,L,

k′i` =
N∑
j=1

j 6=i,j 6∈Uon

H(yxij ||`||s) · (−1)i>j mod q

72 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

and sends these values back to the tally. Note that |Uon| should be at least 3,

otherwise there would be no privacy guarantees for the users in Uon. Assuming

all users in Uon submit the values k′i` , the tally can recover the entries in

the aggregate sketches (for users in Uon) by computing:

C ′` =
 ∑
i∈Uon

bi`−
∑
i∈Uon

k′i`

 mod 232

Groups. Although the protocol can cope with faults, we should nonethe-

less minimize the probability of missed contributions. Moreover, as discussed

in Section 4.1.4, the protocol’s complexity also depends on the number of

users and, in the case of iPlayer, there can be peaks of hundreds of thousands

of users per hour1. Consequently, we need to organize users into reasonably

sized groups. As mentioned earlier, combining aggregates from different groups

is straightforward and can be done, in the clear, by the tally.

We argue that a good choice is between 100 and 1,000 users per group,

as also supported by our empirical evaluation presented later. There could

be a few different ways to form groups: for instance, the tally could group

users in physical proximity and/or select users that are watching/listening a

video with at least a couple of minutes left to watch. Also note that users not

involved in the protocol (or having limited “history”) can get recommendations

too as the tally can still provide them with the global co-view matrix, which,

even though it does not include their own contribution, can be used by the

ItemKNN algorithm to derive recommendations.

Security analysis. The security of our scheme, in the honest-but-curious

model, is straightforwardly guaranteed by that of the “low overhead” private

aggregation scheme by Kursawe et al. [120], which is secure under the CDH as-

sumption. We modify it to cope with users faults and to aggregate Count-Min

Sketch entries, rather than the actual data, and this does not affect the privacy

properties of the scheme. In case of passive collusions between users, the con-

fidentiality of the data provided by the non-colluding users is still preserved.
1http://downloads.bbc.co.uk/mediacentre/iplayer/iplayer-performance-may17.

pdf

http://downloads.bbc.co.uk/mediacentre/iplayer/iplayer-performance-may17.pdf
http://downloads.bbc.co.uk/mediacentre/iplayer/iplayer-performance-may17.pdf

4.1. Private Recommender Systems For Streaming Services 73

Finally, note that malicious active users could report fake values in order to

invalidate the final aggregation values, however, protocol’s integrity could be

preserved using verifiable tools such as zero-knowledge proofs and commit-

ments, an extension we leave as part of future work, along with considering a

malicious tally.

4.1.3 Prototype implementation

We have implemented the tally’s functionalities as a web application run-

ning on the server-side JavaScript environment Node.js (or Node for short).2

We also use Express.js3 to organize our application into a Model View Con-

troller (MVC) web architecture and Socket.io4 to set up bidirectional web-

socket connections. Integrating our solution is as simple as installing a Node

module through the Node Package Manager (NPM) and importing it from any

web application, thus requiring no familiarity with the inner workings of the

cryptographic and aggregation layers.

The module for user’s functionalities is modeled as the client-side of the

web application and can be run as simple JavaScript code embedded on a

HTML page. Therefore, it requires no deployment or installation of any addi-

tional software by the users, but runs directly in the browser, transparently,

when users visit tally’s website. Our JavaScript implementation is also com-

patible with smartphone browsers (e.g., the Android version of Chrome), nev-

ertheless, we have also implemented a stand-alone Android application using

Apache Cordova.5

Cryptographic operations. The cryptographic layer of the protocol is also

written in JavaScript, using the Ed25519 curve [24] implementation available

from Elliptic.js,6 which supports 256-bit points and provides security compa-

rable to a 128-bit security parameter. SHA-256 is used for (cryptographic)

2https://nodejs.org/
3http://expressjs.com/
4http://socket.io/
5https://cordova.apache.org/
6https://github.com/indutny/elliptic

https://nodejs.org/
http://expressjs.com/
http://socket.io/
https://cordova.apache.org/
https://github.com/indutny/elliptic

74 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

100 200 300 400 500 600 700 800 900 1000
Number of users (N)

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)
Encryption

(a) Client

100 200 300 400 500 600 700 800 900 1000
Number of users (N)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Aggregation

(b) Server

Figure 4.2: Execution time for increasing number of users (with 700 programs).

hashing operations.

4.1.4 Performance evaluation
We now analyze the performance of our system, both analytically (report-

ing asymptotic complexities) and empirically.

Asymptotic complexities. The setup phase carried out by the user requires

O(N) random group points (where N is the number of total users) and O(N)

messages need to be sent for all the users to distribute the public keys. To

generate the blinding factors, each user then needs to perform O(N) exponen-

tiations in G and O(L ·N) hashing operations. Count-Min Sketch encryption

(at user’s side) requires O(L) integer additions in Zq, one for each of the

L = O(log(M2)) Count-Min Sketch entries, while communication complexity

amounts to O(L) 32-bits integers for each user. To complete the aggregation,

the tally computes O(L ·N) linear operations.

The use of the Count-Min Sketch significantly speeds up the efficiency

of the system. In fact, without them, each user would need to perform

O(N(M2)) hashing operations and send O(M2) 32-bit integers, while the

tally would need to compute O(N(M2)) operations.

Computation overhead. We have also simulated the execution of our pri-

vate recommender system and measured execution times (averaged over 100

iterations) for all operations. Simulations have been performed on a machine

4.1. Private Recommender Systems For Streaming Services 75

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

21

22

23

24

25

26

27

28

29

30

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Encryption

(a) Client

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Aggregation

(b) Server

Figure 4.3: Execution time for increasing number of programs (with 1,000 users).

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

0

500

1000

1500

2000

2500

3000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Encryption w/o sketch

(a) Client

100 200 300 400 500 600 700 800 900 1000
Number of programs (M)

0

10

20

30

40

50

60

70

80

90

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Aggregation w/o sketch

(b) Server

Figure 4.4: Execution time for increasing number of programs (with 1,000 users)

without Count-Min Sketch.

running Ubuntu Trusty (Ubuntu 14.04.2 LTS), equipped with a 2.4 GHz CPU

i5-520M and 4GB RAM.

In Figure 4.2, we plot running times of protocol’s client- and server-side

for an increasing number of users, fixing the number of programs to 700 (the

average number of programs available on iPlayer) and the sketch parameters

to ε = δ = 0.01 (see Definition 7). Using this setting, the number of rows d

and columns w of the Count-Min Sketch amounts to d = 18 , w = 272 leading

to a Count-Min Sketch of size L = d ·w = 18 · 272 = 4,896. Running times

grow linearly in the number of users. As illustrated in Figure 4.2(a), the

encryption, performed by each user (see step (2) in Figure 4.1), takes 2.7

76 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

seconds with 100 users and 27 seconds with 1,000 users, while Figure 4.2(b)

reveals that tally completes the aggregation (step (5) in Figure 4.1) in 78ms

(resp., 780ms) with 100 (resp., 1,000) users.

We then measure the execution time for an increasing number of programs

and a fixed number of users, i.e., 1,000. Figure 4.3(a) illustrates running times’

logarithmic growth for encryption, ranging from 21 seconds with 100 programs

to 28 seconds with 1,000 programs. Figure 4.3(b) illustrates tally’s execution

times for the aggregation, which approximately range from 600ms to 800ms.

Note that the “stair” effect of the plots in Figure 4.3 is due to the fact that

the Count-Min Sketch size can be the same with close numbers of programs,

and thus leads to the same execution times for both user and tally. On the

contrary, the number of users does not affect the size of the Count-Min Sketch

(see Figure 4.2)

Without the compression factor of the Count-Min Sketch, the running

times for both user and tally would grow linearly in the size of the co-view

matrix (i.e., M ·M/2), yielding remarkably slower executions. As illustrated

in Figure 4.4(a), with 1,000 users and 1,000 programs, running time for each

user amounts to almost 50 minutes instead of 28 seconds using the sketch,

whereas, the aggregation at the tally completes in almost one and a half

minute (versus less than one second using Count-Min Sketch). Finally, exe-

cution time of the ItemKNN operations carried out at user’s side, with 700

programs, amounts to 850ms for each user.

Communication overhead. In Table 4.1, we report the amount of bytes

exchanged between all parties for different number of users and Count-Min

Sketch sizes (for different choices of sketch parameters ε and δ), fixing the

number of programs to 700. Note that, without the compressing factor of the

sketch, with 700 programs, each user would have to send 960KB instead of

20KB.

Accuracy estimation. Finally, we evaluate the accuracy loss due to the

use of Count-Min Sketch, specifically, over the most 50 frequent items, using

4.2. Private Aggregate Location Prediction 77

#Users Bytes Sketch Size Bytes

(Tally to User) (User to Tally)

100 3,200 4,896 19,584

200 6,400 2,448 9,792

300 9,600 1,638 6,552

400 12,800 1,224 4,896

500 16,000 972 3,888

600 19,200 810 3,240

700 22,400 702 2,808

800 25,600 612 2,448

900 28,800 540 2,160

1000 32,000 486 1,944

Table 4.1: Bytes exchanged by user and tally for different #users and size of

the Count-Min Sketch, considering 700 programs.

a synthetic dataset sampled from a zipfian distribution simulating a million

users. We set the Count-Min Sketch parameters to be ε= 0.01 and δ= 0.01 as

we have measured an acceptable accuracy loss level introduced by the Count-

Min Sketch (see below). Once again, we fix the number of programs to M =

700, leading to a Count-Min Sketch of size L= 4,896. Figure 4.5(a) shows that

the Count-Min Sketch estimation over the most 50 frequent items is almost

indistinguishable from the true population.

We also plot, in Figure 4.5(b), the average error, defined as |ĉi−ci|/
∑
j |cj |,

over the most 50 frequent items with an increasing number of users, while

fixing M = 700, δ = 0.01 (yielding a total number of items to update on the

Count-Min Sketch of T = M ·M/2 = 245,000) and three choices of the ε pa-

rameter, i.e., 0.01,0.05, and 0.1. The average error decreases with more users

and smaller values of ε. Standard deviation values are infinitesimal, thus, we

do not include them in the plot as they would not be visible.

4.2 Private Aggregate Location Prediction
In this section, we instantiate a mobile application enabling users to re-

port, to a service provider (tally), their locations over time. Users’ privacy

78 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

(a) True vs estimated counters (b) Average error for different values

of ε

Figure 4.5: Visualizing the accuracy of the Count-Min Sketch for the most 50

frequent items (with 700 programs and sketch size 4,896).

is protected as only aggregate (over many users) location statistics are dis-

closed. We then show how these statistics can be used to train a model and

predict future movements, and support private computation and prediction of

“heat maps” relying on the aggregate counts of people in a given area over a

period of time. Location heat maps are useful in many different applications

as they provide a graphical representation of congestion, using different colors

to represent the “popularity” of geographical areas.

System model. We operate in the same model as our privacy-friendly rec-

ommender system (see Section 4.1.2), involving a tally that privately aggre-

gates location statistics contributed from a set of users, and re-use the same

cryptographic layer. Once again, we support efficient computation of private

statistics using (i) Count-Min Sketch’s succinct data representation and (ii)

privacy-preserving aggregation with users’ blinding factors summing up to

zero.

Overview. We assume a 2-D space territory R is partitioned into a grid of

|S| = p× p cells (S = {S[1,1],S[1,2], . . . ,S[p,p]}), and t finite intervals (time

slots) [tj−1, tj], where j ∈ N+. Let S(tj)
i be the grid containing, for each cell,

the number of times the user Ui has logged her position (using a GPS mea-

4.2. Private Aggregate Location Prediction 79

Figure 4.6: Number of taxi locations over time.

surement) within that particular cell over t ∈ [tj−1, tj]. User Ui, for each time

slot [tj−1, tj], builds the grid S(tj)
i with locations logged over time, maps the

grid into a Count-Min Sketch, and sends the encrypted sketch to the tally.

This aggregates and decrypts them, reconstructing the grid containing the

(estimated) aggregate locations.

The location statistics can be used to display ‘heat maps” (e.g., a graphical

representation of congestion), or to perform time-series based prediction over

a sequence of heat maps. Using an Exponential Weighted Moving Average

(EWMA) model (cf. Section 2.3.2), we can predict the future popularity of a

cell, by relying on the past (approximated) observations for that cell. Other

machine learning techniques, e.g., Multivariate Support Vector Machines or

Logistic Regression, could also be used for the prediction, but we consider it

to be beyond the scope of this work to investigate new predictors.

The San Francisco Cabs dataset. To evaluate the feasibility of our in-

tuition, we use a publicly available dataset containing mobility traces of San

Francisco taxi cabs.7 The dataset contains 11 million GPS coordinates, gen-

erated by 536 taxis over almost a month in May 2008. We group the taxi

locations in time slots of one hour, leading to a total of 575 epochs. Figure 4.6

shows the presence of weekly and daily patterns in the number of taxi loca-

7http://cabspotting.org/

http://cabspotting.org/

80 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

Figure 4.7: Average error introduced by the Count-Min Sketch on the aggregate

statistics for the top-100 locations.

tions over time (i.e. hourly time slots) and peaks of roughly 25,000 total hourly

contributions.

Succinct data representation. We investigate whether succinct data rep-

resentation could be applied to the problem of collecting location statistics,

and measure the accuracy loss introduced by the Count-Min Sketch’s com-

pact representation. In Figure 4.7, we plot the average error defined as

|ĉi− ci|/
∑
j |cj | and the relative standard deviation over the most 100 pop-

ular cells for each time slot, while fixing ε = δ = 0.01 and the total number

of cells to |S| = 100× 100 (yielding a Count-Min Sketch of size L = 3,808).

Observe that the average error is infinitesimal for every time slots.

Heat map prediction. Next, we focus on predicting future heat maps using

the EWMA algorithm introduced in Section 2.3.2. We start by evaluating

the accuracy of EWMA-based prediction relying on the aggregates collected

without using the Count-Min Sketch. We perform the prediction over a subset

of 12 consecutive epochs having the maximum number of reported locations,

giving the past 24 hours observations as input to the EWMA algorithm. Fig-

ure 4.8 plots the Mean Absolute Error (MAE) in the prediction compared to

the ground truth over the most 100 popular cells, considering different values

of α, i.e., EWMA’s smoothing coefficient (cf. Section 2.3.2). The plot shows

4.2. Private Aggregate Location Prediction 81

Figure 4.8: Mean absolute error in the prediction for different values of prediction

algorithm’s parameter α.

Figure 4.9: Mean absolute error introduced by the Count-Min Sketch on the

prediction accuracy.

that, in almost all slots, lower values of α lead to more accurate results.

We then perform the prediction over the approximate heat maps, i.e.,

using the sketches. We focus on the same time slot, and fix α= 0.1. Figure 4.9

shows the error introduced by the Count-Min Sketch in the prediction, for

each time slot considered, with respect to the prediction based on the “real”

heat maps. We observe that this error, while fluctuating, is appreciably low

for every prediction, thus confirming the feasibility of our techniques for the

problem of privately predicting future heat maps.

Once again, we have implemented our techniques in JavaScript, with the

82 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

server-side running as a Node module, and client-side running as an Android

application built using Apache Cordova.

4.3 Tor Hidden Services Statistics
The privacy-preserving collection of statistics using efficient data struc-

tures, seeking a trade-off between accuracy and efficiency, has also interesting

applications in non-user facing settings such as collecting network statistics

from servers or routers. In this section, we present a novel mechanism geared

to privately gather statistics in the context of the Tor anonymity network [65].

The Tor project has recently received funding to improve monitoring of load

and usage of Tor hidden services.8 This motivates them to extract aggregate

statistics about the number of hidden service descriptors from multiple Hidden

Service Directory authorities. In order to ensure robustness, the Tor project

has determined that the median – rather than the mean – of these volumes

should be calculated, which is beyond privacy-friendly statistics approaches

like Privex [77].

In this section, we first describe the protocol for estimating median statis-

tics using Count Sketch, then, we present the design and deployment of its

prototype implementation, along with its performance evaluation.

4.3.1 Private median estimation using Count Sketch

We rely on the Count Sketch [44] data structure, which closely resembles

Count-Min Sketch, used in Sections 4.1–4.2. Recall from Section 2.2 that

building a Count Sketch follows the same process as a Count-Min Sketch, thus

leading to a d ·w table of positive integer values, whereas, the estimation of an

item’s frequency is slightly different: for each row, di, a hash function is applied

to the item leading to a column wj . An unbiased estimator of the frequency of

the item is the value at this position minus the value at an adjacent position

– and the median of those estimators is the final estimated frequency. What

is key to the success of our techniques is that the estimate of the frequency of
8https://www.torproject.org/docs/hidden-services.html.en

https://www.torproject.org/docs/hidden-services.html.en

4.3. Tor Hidden Services Statistics 83

specific values, as well as sets of values, is a simple linear sum of Count Sketch

entries; computing it does not require non-linear (e.g., min) operations as for

the Count-Min Sketch.

For this application, we build on privacy-preserving data aggregation

based on threshold public-key encryption, specifically, an Additively Homo-

morphic Elliptic-Curve variant of El Gamal (AH-ECC) [22], summarized be-

low. This allows us to seamlessly tolerate missing contributions – following an

approached first proposed by Jawurek et al. [107].

AH-ECC consists of the following three algorithms (using a multiplicative

notation):

1. KeyGen(1τ): Given a security parameter τ , choose an elliptic curve E

and (g1,g2) public generators on E, generating a group of order q. Choose

a random private key x ∈ Zq, define the public key as pk = g1x, and

output public parameters (E,g1,g2,pk) and private key x.

2. Encrypt(m,pk): The message m is encrypted by computing two ellip-

tic curve points as (A,B) := (g1r,pkrg2m), where r ∈ Zq is selected at

random. The ciphertext is thus the tuple of points (A,B).

3. Decrypt(A,B,x): Decryption is performed by computing the element

BA−x = g2m. We can achieve constant time decryption by pre-computing

a table of discrete logarithms which is then used to recover m from g2m

(this solution is practical for small values of m).

AH-ECC is additively homomorphic since an element-wise multiplication of

ciphertexts yields an encryption of their sum.

Setup. Our system relies on a set of authorities that can jointly decrypt a

ciphertext from the AH-ECC additively homomorphic public-key cryptosys-

tem. During setup, each authority generates their public and private key and

a group public key is computed by multiplying all the authorities’ public keys.

Note that we operate in a distributed system setting (i.e., the Tor network),

therefore, similar to PrivEx [77], one can easily instantiate decryption author-

ities.

84 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

Protocol. Using Count Sketch, we can collect a number of private readings

from Hidden Service Directories (HSDir), and compute an approximation of

the median. Each HSDir builds a Count Sketch, inserts its private values into

it, encrypts it, and sends it to the authorities. These aggregate all sketches

by homomorphically adding them element-wise, yielding an encrypted sketch

summarizing the set of all HSDir values.

Once the authorities have computed the aggregate sketch, an interactive

divide-and-conquer algorithm is applied to estimate the median given the range

of its possible values is known. At each iteration, the number of sample values

in the range is known, starting with the full range and all values received. The

range is then halved and the sum of all elements falling in the first half of

the range is jointly decrypted. If the sum falls within first half of the range

it is retained for the next iteration, otherwise the second half of the range

is considered at the next iteration. The process stops once the range is a

single element. Following the master theorem [55], we know that this process

converges in O(logn) steps, for n elements in the domain of the values/median.

Due to frequency estimations for the ranges using Count Sketches that provide

noisy estimates, we expect this median to be close, but possibly not exactly the

same as the true sample median, depending on the Count Sketch parameters

δ and ε.

Output privacy. Note that this process is not “perfectly” private in a tra-

ditional secure computation setting, as the volume of reported values falling

within the intermediate ranges considered is leaked. This may be dealt with

in two ways: (1) the leakage may be considered acceptable and the algorithm

run as described, or (2) the technique can be enhanced to provide differential

privacy by adding noise to each intermediate value.

Differentially private estimates. The sensitivity [72] of the estimates in

any range of values using the Count Sketch is at most d, since each HSDir

contribution increases by at most 1 in at most d values into the d ·w Count

Sketch table. Therefore, we can achieve ε-differential privacy if we add, to

4.3. Tor Hidden Services Statistics 85

each decrypted value, noise from a Laplace distribution with mean zero and

variance ξ ·d/ε, where ξ is the number of decrypted intermediate results and

ε the differential privacy parameter. However, doing so may result in the

divide-and-conquer algorithm mis-estimating the range in which the median

lies, and results in further mistakes in the final median estimate. As discussed

in Section 2.1.3, although we use ε to denote a parameter for both Count

Sketch and differential privacy, it is clear from the context which one it relates

to.

4.3.2 Implementation and evaluation

We implement and evaluate the proposed scheme aiming to: (i) estimate

the trade-off between size of the sketch and the accuracy of the median compu-

tation, (ii) evaluate the cost of cryptographic computation and communication

overheads, and (iii) assess the trade-off between the accuracy of the median

and the quality of protection that may be achieved through the differentially

private mechanism.

For our evaluation, we instantiate AH-ECC using the NIST-P224 curve

as provided by the OpenSSL library and its optimizations by Käsper [113].

Our implementation of the cryptographic core of the private median scheme

amounts to 300 lines of Python code using the petlib OpenSSL wrapper,9 and

another 350 lines of Python include unit tests and measurement code. All ex-

periments have been performed on a machine running Ubuntu Trusty (Ubuntu

14.04.2 LTS), equipped with a 2.4 GHz CPU i5-520M and 4GB RAM. Our

Python implementation is easily pluggable as part of the Tor infrastructure

and does not require changes within the Tor (C-based) core functionalities.

We first illustrate the performance and accuracy of estimating the median

using this technique with both sketch parameters ε and δ equal to either 0.25

or 0.05 against the London Atlas Dataset10 in Table 4.2. The error rate is

computed as the absolute value of difference between the estimated and true

9https://github.com/gdanezis/petlib
10http://data.london.gov.uk/dataset/ward-profiles-and-atlas

https://github.com/gdanezis/petlib
http://data.london.gov.uk/dataset/ward-profiles-and-atlas

86 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

0.50.350.250.150.10.050.0250.01
(epsilon, delta) parameter of Count-Sketch

0

20

40

60

80

100

120

140

%

Median Estimation - Error vs. Size

Error (%)
Size (%)

Figure 4.10: Count Sketch size versus estimation quality.

median divided by the true median.

Further results are presented on an experimental setup that uses as a

reference problem the median estimation in a set of 1,200 sample values, drawn

from a mixture distribution: 1,000 values from a Normal distribution with

mean 300 and variance 25, and 200 values drawn from a Normal distribution

with mean 500 and variance 200. This reference problem closely matches the

settings of the Tor project both in terms of the range of vales (assumed to be

within [0,1000]) and the number of samples [77].

Quality vs. Size. Figure 4.10 illustrates the trade-off between the quality

of the estimation of the median algorithm and the size overhead of the Count

Sketch. The size overhead (green slim line) is computed as the number of

encrypted elements in the sketch as compared with the number of elements

in the range of the median (1,000 for our reference problem). The estimation

accuracy (blue broader line) is represented as the fraction of the absolute

deviation of the estimate from the real value over the real sample median (light

blue region represents the standard deviation of the mean over 40 experiments

for each datapoint). Thus both qualities can be represented as percentages.

The trade off between the size of the sketch and the accuracy of the

estimate is evident: as the sketch size reaches a smaller fraction of the total

possible number of values, the error becomes larger than the range of the

4.3. Tor Hidden Services Statistics 87

Inf 10 5.0 1.0 0.5 0.1 0.05 0.01
Differential Privacy parameter (epsilon)

101

102

103

Ab
so

lu
te

 E
rro

r (
m

ea
n

&
st

d.
 o

f m
ea

n)

Median Estimation - Quality vs. Protection

Figure 4.11: Quality versus differential privacy protection.

median. Thus, Count Sketch with parameters ε,δ < 0.025 are unnecessary,

since they do not lead to a reduction of the information that needs to be

transmitted from each client to the authorities; conversely, for 0.15 < ε,δ the

estimate of the median deviates by more than 20% of its true value making it

highly unreliable.

For all subsequent experiments, we consider a Count Sketch with values

ε = δ = 0.05, leading to d = 3 and w = 55. As outlined in Figure 4.10, this

represents a good trade-off between the size of the Count Sketch (16.5% of

transmitting all values) and the error.

True size and performance. When implemented using NIST-P224 curves,

the reference Count Sketch may be serialized in 10,898 bytes. Each Count

Sketch takes 0.001 sec to encrypt at each HSDir, and it takes 1.456 seconds to

aggregate 1,200 sketches at each authority (0.001 sec per sketch). As expected,

from the range of the reference problem, 10 decryption iterations are sufficient

to converge to the median (therefore ξ = 10). The number of homomorphic ad-

ditions for each decryption round is linear in the range of the median and their

total computational cost is the same order of magnitude as a full Count Sketch

encryption. It is clear from these figures that the computational overhead of

the proposed technique is eminently practical, and the bandwidth overhead

acceptable.

88 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

Quality vs. Differential Privacy protection. Figure 4.11 illustrates the

trade-off between the quality of the median estimation and the quality of differ-

ential privacy protection. The x-axis represents the ε parameter of the differ-

entially private system, and the y-axis the absolute error between the estimate

and the true sample median. Differential privacy with parameter ε = 0.5 can

be provided without significantly affecting the quality of the median estimate.

However, for ε < 0.5 the volume of the error grows exponentially (note the

log scale of the x-axis). While the exact value of a meaningful ε parameter is

often debated in the literature, we conclude that the mechanism only provides

a limited degree of protection, and no ability to readily tune up protection:

utility degrades very rapidly as the security parameter ε decreases.

4.3. Tor Hidden Services Statistics 89

Median (ε,δ = 0.25) Error (%) Median (ε,δ = 0.05) Error (%) Truth

Population - 2015 15143.2 11.3 13215.4 2.8 13600.0

Children aged 0-15 - 2015 2970.8 12.1 2627.6 0.8 2650.0

Working-age (16-64) - 2015 9592.0 2.0 8843.2 5.9 9400.0

Older people aged 65+ - 2015 1284.6 11.4 1345.0 7.2 1450.0

% All Children aged 0-15 - 2015 21.9 10.7 20.1 1.3 19.8

% All Working-age (16-64) - 2015 70.7 5.0 68.8 2.2 67.3

% All Older people aged 65+ - 2015 15.2 37.1 12.0 7.8 11.1

Mean Age - 2013 38.6 8.8 36.9 3.8 35.5

Median Age - 2013 37.7 10.8 35.7 5.1 34.0

Population density (persons per sq km) - 2013 10231.3 44.8 5792.9 18.0 7067.0

% BAME - 2011 45.6 26.3 35.7 1.0 36.1

% Not Born in UK - 2011 40.1 7.6 40.1 7.6 37.3

Male life expectancy -2009-13 84.1 5.7 79.6 0.0 79.6

Female life expectancy -2009-13 87.0 3.5 84.9 0.9 84.1

In employment (16-64) - 2011 6532.8 7.0 5843.7 4.2 6103.0

Employment rate (16-64) - 2011 68.5 2.0 70.8 1.3 69.9

Number of properties sold - 2013 169.3 1.4 149.8 10.3 167.0

Number of Household spaces - 2011 5619.1 5.4 5025.9 5.7 5332.0

% detached houses - 2011 2.4 44.7 1.6 62.2 4.3

% semi-detached houses - 2011 29.0 70.6 16.7 1.5 17.0

% terraced houses - 2011 29.4 39.8 21.1 0.6 21.0

% Flat, maisonette or apartment - 2011 53.1 15.1 49.7 7.9 46.1

% Households Social Rented - 2011 26.0 27.5 19.9 2.4 20.4

% dwellings in council tax bands A or B - 2011 21.2 79.9 10.4 12.2 11.8

% dwellings in council tax bands C, D or E - 2011 63.7 7.5 71.6 3.9 68.9

% dwellings in council tax bands F, G or H - 2011 0.3 96.7 1.4 82.6 8.1

Claimant Rate of Incapacity Benefit - 2014 1.8 80.0 0.9 10.0 1.0

Claimant Rate of Income Support - 2014 4.4 119.6 2.3 16.8 2.0

% of lone parents not in employment - 2011 51.9 11.2 47.5 1.6 46.7

(ID2010) % of LSOAs in worst 50% nationally - 2010 -6.4 107.7 99.2 19.5 83.0

Average GCSE capped point scores - 2013 369.0 6.0 349.4 0.4 348.0

Unauthorised Absence in All Schools (%) - 2013 1.7 53.5 0.8 26.2 1.1

% with no qualifications - 2011 20.8 19.1 18.8 7.2 17.5

% with Level 4 qualifications and above - 2011 44.4 25.1 39.1 10.1 35.5

A-Level Average Point Score Per Student - 2012/13 715.3 5.7 668.4 1.3 676.9

A-Level Average Point Score Per Entry; 2012/13 215.0 3.1 210.8 1.1 208.5

Violence against the person rate - 2013/14 1.2 92.5 10.5 35.6 16.3

Robbery rate - 2013/14 1.6 31.8 0.1 94.7 2.3

Theft and Handling rate - 2013/14 -3.5 113.7 11.4 55.6 25.6

Criminal Damage rate - 2013/14 9.1 43.8 5.9 6.6 6.3

% area that is open space - 2014 30.1 28.3 19.3 17.9 23.5

Cars per household - 2011 1.6 99.4 0.5 35.0 0.8

% travel by bicycle to work - 2011 12.0 343.9 3.0 12.5 2.7

Turnout at Mayoral election - 2012 38.1 11.5 35.0 2.3 34.2

Table 4.2: Median estimation with 22 ciphertexts (d= 2, w = 11, ε,δ = 0.25) and

165 ciphertexts (d= 3, w = 55, ε,δ = 0.05) on the London Atlas Dataset.

90 Chapter 4. Efficient Privacy-Preserving Computation of Statistics

Chapter 5

Privacy-Preserving Data

Release with Generative Neural

Networks

In Chapter 4, we showed how to train simple machine learning models

from aggregate data gathered from many sources.

We now present a novel approach supporting the privacy-preserving re-

lease of generative models that is a mixture of k generative neural networks.

These networks are trained together and collectively learn the generator dis-

tribution of a dataset. The data is first divided into k clusters using a differ-

entially private clustering approach, then each cluster is given to a separate

generative neural network, such as Restricted Boltzmann Machines (RBM) [86]

or Variational Autoencoders (VAE) [115] (cf. Section 2.3.4). These networks

are trained only on their own cluster using differentially private gradient de-

scent.

Training distinct generative models on different partitions of the dataset

has several benefits. First, multiple models can generate more accurate syn-

thetic samples than a single model trained on the whole dataset, as each neural

network is trained only on similar data samples. This prevents the mixture

model to generate unrealistic synthetic samples which may arise from the im-

plausible combination of multiple very different clusters. This scenario is much

92Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

Dataset
Kernel k-means

(Alg. 4)
...

Generative NN 1
(Alg. 5)

...

Data
Generator

Synthetic
dataset

θ1

θ2

θk

...

DPGM (Alg. 3)

Cluster 1

Cluster 2

Cluster k

Computing clipping threshold
(Alg. 6)

X

Cb

Cb

X̂1

X̂2

X̂k

Generative NN 2
(Alg. 5)

Generative NN k
(Alg. 5)

Figure 5.1: Overview of our differentially private generative model (DPGM) algo-

rithm.

more likely when the training is perturbed to guarantee differential privacy.

Second, each neural network models a different component of the generator

distribution, and hence learns any specifics of a cluster faster than a single

model. In other words, a single model would need more training epochs than

a mixture of generative models to achieve a comparably rich representation of

the clusters. As each iteration of the learning algorithm requires some pertur-

bation to guarantee privacy, a mixture model needs less noise which eventually

yields more accurate model parameters.

5.1 Differentially Private Generative Model

(DPGM)
In this section, we present our Differentially Private Generative Model

(DPGM) approach, which is detailed in Algorithm 3 and illustrated in Fig-

ure 5.1. In the rest of the chapter, we use the following notation: I denotes a

universe of items (e.g., set of visited locations, pixels in an image, etc.), where

|I| = m. A dataset X ⊆ 2I is the ensemble of all items of some set of indi-

viduals. A record, which is a non-empty subset of I, refers to all items of an

individual from X and is represented by a binary vector x of size m. Table 5.1

summarizes notation and symbols used throughout the chapter.

5.1. Differentially Private Generative Model (DPGM) 93

Symbol Description

x binary vector

X dataset

k number of k-means clusters

TK k-means iterations

TS SGD iterations

X̂1, . . . , X̂k data clusters

θ1, . . . , θk generative models

ĉ1, . . . , ĉk noisy cluster centers

σC,σK,σG noise scales

Cmax max. norm bound

w max. number of discretized norm bounds

κ kernel function

z randomized Fourier feature map

d number of features

Cb clipping threshold

L loss function

η learning rate

L batch size

Table 5.1: Notation and symbols used in this chapter.

A dataset X = {x1, . . . ,xN} is first partitioned into k clusters, denoted by

X̂1, X̂2, . . . , X̂k, which are in turn used to train k distinct generative models,

where the parameters of the resulting models are denoted, respectively, by

θ1, θ2, . . . , θk. Data samples are similar within a cluster, thus, generative models

simultaneously trained on each partition converge faster than a single model

trained on the whole dataset X. As θ1, θ2, . . . , θk are learned using perturbed

gradient descent, they can be released and used to generate synthetic data

using the k generative models.

Our learning approach involves two main steps:

94Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

Algorithm 3: DPGM: Differentially Private Generative Model
Input: Dataset: X = {x1, . . . ,xN}, # of custers: k, k-means

iterations: TK, SGD iterations: TS, Noise scales: σC,σK,σG
1 Cluster data records in X:

2 {X̂1, X̂2, . . . , X̂k}= DPkmeans(k,TK,X,σC,σK) . see Algorithm 4

3 Initialize θ1, θ2, . . . , θk randomly

4 for t ∈ [TS] do

5 Select (X̂b, θb) ∈ {(X̂1, θ1), . . . ,(X̂k, θk)} with probability |X̂b|/|X|

6 Update parameters of model θb:

7 θb = DP-SGD(X̂b, θb,σC,σG) . see Algorithm 5
Output: θ1, θ2, . . . , θk

1. Records in X are clustered in a random feature space using differentially

private kernel k-means (see Section 5.1.1) into clusters X̂1, X̂2, . . . , X̂k;

and

2. A generative model (e.g., RBM [86] or VAE [115]) with parameter θi
is trained on cluster X̂i (see Section 5.1.2) using differentially private

gradient descent, where the training data are composed of the records of

X̂i.

In each SGD iteration (Line 5-7 in Algorithm 3), a model θb is chosen uni-

formly at random along with corresponding training data X̂b, and a single

SGD iteration is performed to update θb using a random sample B of X̂b with

size L (Line 7 in Algorithm 3). The output of our algorithm are the parame-

ters of the trained generative models, i.e., θ1, θ2, . . . , θk. Finally, these privately

trained models can be used to generate synthetic records which resemble the

original ones, i.e., preserve their general characteristics that are not specific to

any single individual (as per ε and δ discussed in Section 5.2).

5.1.1 Private kernel k-means
In Section 2.3.3, we outlined the kernel k-means algorithm. We now

discuss our private kernel k-means algorithm, presented in Algorithm 4.

5.1. Differentially Private Generative Model (DPGM) 95

It first transforms the data X into a low-dimensional representation X ′ =

{z(x1), . . . , z(xN)} using randomized Fourier feature map z : Rm→ Rd [177],

and then applies standard differentially private k-means [29] on these low-

dimensional features. We rely on randomized Fourier features as they repre-

sent one of the most popular techniques for scaling up kernel methods with

impressive empirical results [16].

Specifically, z : Rm→ Rd is defined as:

z(x) =
√

2
d

[
cos(〈w̃1,x〉+ b̃1), . . . ,cos(〈w̃d,x〉+ b̃d)

]
(5.1)

where each w̃i ∈Rm is drawn independently from p(w̃) = 1
2π
∫
Rm exp(−j〈w̃,x〉)κ(w̃)dx,

i.e., p(w̃) is the Fourier transform of kernel function κ, and b̃i ∈R is chosen from

[0,2π) uniformly at random. In particular, Bochner’s theorem implies that

p(w̃) is a valid probability density function, if κ is continuous, positive-definite,

and shift-invariant kernel. Hence:

κ(x,y) = κ(x−y) =
∫
Rm

exp(j〈w̃,x−y〉)p(w̃)dw̃

= Ew̃,b̃[〈
√

2cos(〈w̃,x〉+ b̃),
√

2cos(〈w̃,y〉+ b̃)〉]

where the expectation is approximated with the empirical mean over d ran-

domly chosen values of w̃ and b̃ [177].

Standard DP k-means [29] releases the noisy cluster centers which are

computed iteratively using a noisy variant of Lloyd’s algorithm; in each iter-

ation, gaussian noise with scale
√

2σK is added to the size of all clusters, and

with scale
√

2σKCb to the sum of all cluster members in each cluster. These

noisy values are used to compute the noisy cluster centers {ĉ1, . . . , ĉk}.

At the beginning, we initialize clusters centers to random records drawn

from publicly available non-sensitive data which are generated by the same

distribution as the sensitive data. We only need k representative samples, and

such public datasets already exist for images, location, and medical data. To

determine the scale of the gaussian noise, the L2-sensitivity of the cluster size

and that of the sum of norms must be known within each cluster. Although

96Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

Algorithm 4: DPkmeans: Private kernel k-means with Random

Fourier Features
Input: Data: X = {x1, . . . ,xN}, Cluster number: k, Iterations: TK,

Feature number: d, Kernel function: κ, Noise scales: σC,σK
1 Compute Features:

2 w̃i ∼iid p(w̃) for i ∈ [1,d], where p(w̃) = 1
2π
∫
Rm exp(−j〈w̃,x〉)κ(w̃)dx

3 b̃i ∼iid U[0,2π] for i ∈ [1,d]

4 X ′←{z(x1), . . . , z(xN)}, where

z(x) =
√

2/d[cos(〈w̃1,x〉+ b̃1), . . . ,cos(〈w̃d,x〉+ b̃d)]

5 Clip Features:

6 Cb←DPNorm(X ′,σC) . see Algorithm 6

7 X̂ ′←{ẑ(x1), . . . , ẑ(xN)}, where ẑ(xi) = z(xi)/max(1, ||z(xi)||2/Cb)

8 Initialize cluster centers ĉ1, ĉ2, . . . , ĉk on public data

9 for t ∈ [1,TK] do

10 for i ∈ [1,k] do

11 Assign:

12 X̂i←{x : argminj ||ẑ(x)− ĉj ||22 = i}

13 Update:

14 n̂i← |X̂i|+N(0,
√

2σK)

15 ĉi← 1/n̂i
(∑

x∈X̂i ẑ(x) +N(0,
√

2CbσKI)
)

Output: X̂1, X̂2, . . . , X̂k

the L2-sensitivity of the set of cluster size is always
√

2 (a single record can

change the size of at most 2 clusters), such a priori bound does not exist for

the L2-norm of the feature vectors in general. Hence, we need to clip all feature

vectors in L2-norm before applying standard DP k-means, where the clipping

threshold Cb should be set to the average norm of the feature vectors (i.e.,

(1/N)∑x∈X ||z(xi)||2) and is approximated by Algorithm 6. Replacing z(xi)

with ẑ(xi) = z(xi)/max(1, ||z(xi)||2/Cb) guarantees that all feature vectors are

kept as long as their norm is less then Cb, or they are scaled down to have a

norm of Cb.

5.1. Differentially Private Generative Model (DPGM) 97

Nevertheless, for kernel functions like the Radial Basis Function (RBF)1,

a small norm bound Cb can be used (see Theorem 3). This bound is constant

for any input data and feature size independently of the width γ of the RBF

kernel. Thus, as opposed to standard k-means [29], our approach can detect

linearly non-separable clusters, and, used with RBF kernel, add constant noise

to feature vectors independently of their size d.

Theorem 3. If κ(x,y) = exp(−γ||x− y||2), then E[||z(x)||2] ≤ 1 for any x ∈

{0,1}∗ and γ, where the expectation is taken on the randomness of z.

First, we introduce and prove Lemma 2.

Lemma 2. Let N(0,σ) be a zero-centered normal random variable with stan-

dard deviation σ. Then:

1. E[cos(N(0,σ))] = exp(−σ2/2) and

E[sin(N(0,σ))] = 0,

2. E[cos2(N(0,σ))] = (1 + exp(−2σ2))/2 and

E[sin2(N(0,σ))] = (1− exp(−2σ2))/2

Proof of Lemma 2. Let exp(jN(0,σ)) denote a complex random variable. It

follows from the moment generating function of N(0,σ) that:

E[exp(jN(0,σ))] = exp((jσ)2/2) = exp(−σ2/2)

which means that:

E[cos(N(0,σ)) + j sin(N(0,σ))] = E[exp(jN(0,σ))]

= exp(−σ2/2)

This implies that E[cos(N(0,σ))] = exp(−σ2/2) and E[sin(N(0,σ))] = 0 due to

the linearity of expectation. Hence:

E[cos2(N(0,σ))] = E[(1 + cos(2N(0,σ)))/2]

= (1 + exp(−2σ2))/2

1If the kernel function is RBF, i.e., κ(x,y) = exp(−γ||x−y||2), then p(w̃) has zero cen-

tered gaussian distribution with standard deviation 2γI .

98Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

and

E[sin2(N(0,σ))] = E[(1− cos(2N(0,σ)))/2]

= (1− exp(−2σ2))/2

where we used that 2N(0,σ) = N(0,2σ).

Proof of Theorem 3. If κ(x,y) = exp(−γ||x−y||2), then

p(w̃) = 1
2π

∫
Rm

exp(−j〈w̃,x〉)κ(w̃)dx

has zero centered gaussian distribution with standard deviation 2γI .

E[||z(x)||2] = E


(2/d)

d∑
i=1

cos2(〈N(0,2γI),x〉+U[0,2π])


1
2


≤
√

2
d

 d∑
i=1

E
[
cos2(〈N(0,2γI),x〉+U[0,2π])]

]
1
2

(by Jensen’s inequality and the linearity of expectation)

≤
√

2
d

 d∑
i=1

E
[
cos2(〈N(0,2γI),x〉)/2 + sin2(〈N(0,2γI),x〉)/2

]
1
2

≤
√

1
d

 d∑
i=1

E
[
cos2(N(0,2γ

√
||x||1)

]
+E

[
sin2(N(0,2γ

√
||x||1)

]
1
2

(by Lemma 2)

≤ 1

where, in the second inequality, we used that cos2(a+ b) = cos2(a)cos2(b)−

2cos(a)sin(a)cos(b)sin(b)+sin2(a)sin2(b), E[cos(U[0,2π])] =E[sin(U[0,2π])] =

0, E[cos2(U[0,2π])] = E[sin2(U[0,2π])] = 0.5.

Therefore, DP kernel k-means has two main advantages over standard DP

k-means [29]. First, kernel k-means can find linearly non-separable clusters.

Second, if it is used with RBF kernel, the added noise is independent of the

L2-norm of the data records. As we show in Section 5.3, this can lead to much

larger clustering accuracy especially for stringent privacy requirements (i.e.,

for ε < 0.5) even for large dimensional data.

5.1. Differentially Private Generative Model (DPGM) 99

5.1.2 Private Stochastic Gradient Descent

We now present our private SGD technique, summarized in Algorithm 5,

considering a single SGD batch iteration. Our starting point is the work by

Abadi et al. [1]: similar to theirs, our solution provides differential privacy to

the training data by first clipping the norm of the gradient update of each

record, and then perturbing these clipped gradients by the Gaussian mecha-

nism. However, we achieve better accuracy as the clipping threshold is selected

adaptively in each SGD iteration.

In particular, in each SGD iteration, we also (1) compute the gradient of

the loss function L on a random subset B of records (denoted as “batch”) in

Line 2 of Algorithm 5, (2) clip the L2 norm of the gradient of each record in B

to have a norm at most Cb (in Lines 3-6), (3) add gaussian noise N(0,
√

2σGCbI)

to the average of these clipped gradient updates (Line 7), and finally (4) per-

form the descent step (Line 8). At the end, the updated model parameters θ

are returned. A complete training epoch on the whole dataset X consists of

(|X|/L) SGD iterations, which are required to process all records in every clus-

ter on average. Indeed, each record in a cluster X̂b is selected with probability

(|X̂b|/
∑k
i=1 |X̂i|)× (L/||X̂b|) = L/|X|, where ∑k

i=1 |X̂i|= |X|. Notice that the

L2-sensitivity of ∑i ĝ(xi) is
√

2Cb, as the norm of every ĝ(xi) is at most Cb,

and one record can change at most two clusters.

5.1.3 Adaptive selection of the norm bound

Both our private kernel k-means (in Line 6 of Algorithm 4) and private

SGD method (in Line 5 of Algorithm 5) require the differentially private com-

putation of the average L2-norm in a given set of records, which is then used

as the clipping threshold Cb in both algorithms. For this purpose, these algo-

rithms invoke DPNorm which is detailed in Algorithm 6.

In fact, our SGD technique differs from the original private SGD method

by Abadi et al. [1] in the selection of the norm bound Cb (in Lines 4-6 of Al-

gorithm 5). In the original approach [1], Cb is provided as input to the private

SGD and no guideline is given how to compute its value without violating

100Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

Algorithm 5: Private Stochastic Gradient Descent
Input: Data: X̂, Model parameters: weights and biases θ, Noise

scales: σC, σG, Loss function: L(θ) = 1
|X̂|

∑
iL(θ,xci), Learning

rate: η, Batch size: L

1 Sampling: Take a random sample B = {xc1 , . . . ,xcL} of X̂ with

sampling probability q = L/|X̂|

2 Compute Gradient: For each xci ∈B, compute g(xci)←∇L(θ,xci)

3 Clip Gradient:

4 B′←{g(xci), . . . ,g(xcL)}

5 Cb←DPNorm(B′,σC) . see Algorithm 6

6 ĝ(xci)← g(xci)/max
(

1, ||g(xci)||2
Cb

)
7 Add noise: g̃← 1

L

(∑L
i=1 ĝ(xci) +N(0,

√
2σGCbI)

)
8 Descent: θ← θ−ηg̃

Output: θ

differential privacy. Moreover, the selection of the norm bound Cb has a large

impact on the performance of the private SGD in general. If Cb is too small,

there will be slow convergence. Conversely, if it is too large, unnecessarily large

gaussian noise will be introduced on the gradient update. Intuitively, Cb should

be adjusted so that ||g(xci)||2 ≈ Cb for each record xci . This guarantees that

the contribution of xci to g̃ is maximally preserved with the smallest relative

error. Hence, instead of fixing Cb for the whole training, we aim to compute Cb
adaptively for each batch as Cb = (1/L)∑i ||g(xci)||2. This adaptive approach

would ensure fast convergence with small error, and also adapt to the gradient

update of every batch. Indeed, SGD is iterative, so the gradient update g̃ of a

batch/iteration depends on that of the previous batch/iteration, which means

that (1/L)∑i ||g(xci)||2 is different for each batch.

In DPNorm (see Algorithm 6), the computation of the average norm in

a set B of records is randomized to guarantee privacy. A naive solution is to

add gaussian noise to this average, i.e., Cb = (1/L)∑x∈B ||x||2 +N(0, s ·σ′/L),

5.1. Differentially Private Generative Model (DPGM) 101

Algorithm 6: DPNorm: Private Approximation of Average Norm
Input: Data: B = {xc1 , . . . ,xcL}, Noise scale: σC, Max. norm bound:

Cmax, Max. number of discretized norm bounds: w

1 Cj ← j ·Cmax/w for 0≤ j ≤ w

2 Cb← argmaxj≥1{tj +N(0,
√

2σC)}, where

tj = |{x ∈B : Cj−1 < ||g(x)||2 ≤ Cj}|

Output: Cb

where s≥maxx∈B ||x||2. However, maxx∈B ||x||2 is data-dependent and can be

too large if there are outliers in B. Instead, we approximate Cb such that its

value is close to the norm of many records in B, i.e., it is a good approximator

of (1/L)∑x∈B ||x||2. In particular, we discretize the domain of Cb by dividing

(0,Cmax) uniformly into w intervals (Line 1 of Algorithm 6). Then, we use the

Gaussian mechanism (Line 2 of Algorithm 6) to select among the upper bounds

Cj = jCmax/w of these intervals (0 ≤ j ≤ w), which will be the norm bound

Cb for B. Specifically, we build a histogram where bin i equals the number of

records whose gradient norm falls within (Ci−1,Ci]. Then, the (noisy) mode of

this histogram is computed by adding independent gaussian noise N(0,
√

2σC)

to each count, and selecting the bin which has the greatest noisy count. Note

that the L2-sensitivity of the histogram is always bounded by
√

2 no matter

how large maxx∈B ||x||2 is.

5.1.4 Synthetic data generation

To generate an accurate synthetic dataset, data generation should mimic

the training process; in order to generate a synthetic sample, a model with

parameter θi is first selected randomly with probability 1/|X̂i|, then a synthetic

sample is generated using the selected model. This process is repeated until

|X| samples are obtained.

The above generation process ensures that low quality models which were

not selected in training are also less likely to be used for data generation. In

particular, though each model is trained during the same number of epochs

102Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

on its own cluster in expectation, there is no guarantee that all k models will

produce identical quality of synthetic samples due to randomization. Indeed,

a cluster can potentially contain dissimilar samples, or it may be too small to

be selected in Line 5 of Algorithm 3 and hence fail to converge.

5.2 Privacy Analysis
In this section, we present the formal privacy analysis of DPGM. Recall

that DPGM is the composition of private kernel k-means and private SGD.

Let K denote the private kernel k-means algorithm whose output is the noisy

mapped cluster centers after TK clustering iterations (i.e.,K(X) = {ĉ1, . . . , ĉk}).

K is composed of (1) selecting the norm bound using DPNorm and (2) TK
iterations of k-means. Let G1 denote the gaussian mechanism which selects

the norm bound as per Section 5.1.3. A single k-means iteration is the 2-fold

adaptive composition of two gaussian mechanisms G2 and G3 (in Lines 14-15

of Algorithm 4), where G2 perturbs the cluster size (Line 14), while G3 adds

noise to the sum of Fourier features of the cluster members (Line 15). The

L2-sensitivity of the size of every clusters is
√

2, as changing a single record

can change the size of at most two clusters. Similarly, the L2-sensitivity of

the sum of Fourier features of the cluster members is
√

2Cb as it is detailed in

Section 5.1.1.

Since K is the TK-fold adaptive composition of TK clustering iterations,

it follows from Theorem 2 and Lemma 1 (see Section 2.1.3):

βK(λ)≤ TK(βG1(λ) +βG2(λ) +βG3(λ))

≤ TK(λ2 +λ)(1/4σ2
C + 1/2σ2

K) (5.2)

Note that if the RBF kernel is used in kernel k-means (i.e., κ(x,y) =

exp(−γ||x−y||2) in Algorithm 4), then βG1(λ) = 0 and βK(λ)≤TK(λ2 +λ)/2σ2
K

since Cb = 1 is a priori bound on the L2-norm of every feature vector (cf. The-

orem 3).

Let Sk denote the private SGD algorithm whose output is the noisy model

parameters after TS SGD iterations (i.e., S(X) = {θ1, . . . , θk}, computed in the

5.2. Privacy Analysis 103

last iteration of Algorithm 3), and the input is the cluster centers {ĉ1, . . . , ĉk}

provided by K. At the very beginning, S assigns each record to its closest

cluster center in feature space to obtain k non-overlapping training sets (this

is implemented by the last iteration in Algorithm 4). Changing a single record

alters at most a single record in at most 2 training sets (clusters), as the

modified record can be moved from one to another training set. Since all

training sets are non-overlapping, each record is selected in an SGD iteration

with probability q = (|X̂b|/|X|)× (L/||X̂b|) = L/|X| for any k. Moreover, each

of the k models are trained independently, so βSk(λ)≤ βS1(λ), where S1 denotes

the case when k = 1 (i.e., a single model is trained on the whole dataset X

during TS epochs).

The complete SGD training of S1 (Lines 4-7 in Algorithm 3) is the TS-fold

adaptive composition of TS SGD iterations, where we jointly use two pertur-

bation mechanisms G4 and G5 in each iteration; G4 selects a batch uniformly

at random and computes the norm bound Cb (Line 5 of Algorithm 5) for this

batch, then G5 selects the same batch and perturbs its gradient updates with

gaussian noise whose magnitude is calibrated to Cb (Line 7 of Algorithm 5).

The composition of these two mechanisms uses independent source of

randomness through different SGD iterations, hence we can use Theorem 2

to quantify the overall privacy. However, within a single iteration, G4 and G5

do not use independent source of randomness, although both mechanisms use

independent gaussian noise but select the same batch B from the dataset. The

following theorem computes βS1(λ), and is a generalization of Theorem 2 when

the component mechanisms can use dependent source of randomness.

Theorem 4 (General Moments Accountant). Let βAi(λ) be

maxX,X ′ logEO∼A(X)[exp(λP(A,X,X ′,O))], and A1:k be the k-fold adaptive

composition of A1,A2, . . . ,Ak. Then:

1. βA1:k(λ)≤∑k
i=1 jiβAi(λ/ji)

2. A1:k is (ε,minλ exp(∑k
i=1 ji ·βAi(λ/ji)−λε))-DP

for any ∑k
i=1 ji = 1, where ji > 0 and A1,A2, . . . ,Ak can use dependent coin

tosses.

104Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

Proof. We extend the proof of Theorem 2 in [1] to the case when the composite

mechanism A1:k consists of dependent mechanisms.

LetA1:k denote the composition ofA1,A2, . . . ,Ak andO= (O1,O2, . . . ,Ok).

Recall that, from Definition 1, A1:k is (ε,δ)-DP, if PrO∼A1:k(X)[P(A1:k,X,X
′,O)>

ε]≤ δ. Then:

P(A1:k,X,X
′,O)

= log Pr[A1:k(X) =O]
Pr[A1:k(X ′) =O]

= log
k∏
i=1

Pr[Ai(X) =Oi|Ai−1(X) =Oi−1, . . . ,A1(X) =O1]
Pr[Ai(X ′) =Oi|Ai−1(X ′) =Oi−1, . . . ,A1(X ′) =O1]

(by the Chain rule)

=
k∑
i=1

log Pr[Ai(X) =Oi|Ai−1(X) =Oi−1, . . . ,A1(X) =O1]
Pr[Ai(X ′) =Oi|Ai−1(X ′) =Oi−1, . . . ,A1(X ′) =O1]

=
k∑
i=1

P(Ai,X,X
′,Oi) (5.3)

for any neighboring datasets X and X ′. Hence,

βA1:k(λ) = max
X,X ′

logEO∼A(X)[exp(λP(A1:k,X,X
′,O))]

= max
X,X ′

logEO∼A(X)

exp
λ k∑

i=1
P(Ai,X,X

′,Oi)
 (by Eq. (5.3))

= max
X,X ′

logEO∼A(X)

 k∏
i=1

exp
(
λP(Ai,X,X

′,Oi)
)

≤max
X,X ′

log
k∏
i=1

(
EOi∼Ai(X)

[
exp

(
λP(Ai,X,X

′,Oi)/ji
)])ji

(by the generalization of Hölder’s inequality)

≤max
X,X ′

k∑
i=1

ji log
(
EOi∼Ai(X)

[
exp

(
λP(Ai,X,X

′,Oi)/ji
)])

≤
k∑
i=1

jimax
X,X ′

log
(
EOi∼Ai(X)

[
exp

(
λP(Ai,X,X

′,Oi)/ji
)])

≤
k∑
i=1

jiβAi(λ/ji) (5.4)

5.2. Privacy Analysis 105

where we can apply the generalization of Hölder’s inequality in the first in-

equality due to the fact that exp(·) is always positive. Therefore,

Pr[P(A1:k,X,X
′,O)≥ ε] = Pr[exp(λP(A1:k,X,X

′,O))≥ exp(λε)]

≤ EO∼A(X)[exp(λP(A1:k,X,X
′,O))]/exp(λε) (by Markov’s inequality)

≤ exp(βA1:k(λ)−λε)≤ exp
 k∑
i=1

jiβAi(λ/ji)−λε
 (by Eq. (5.4))

The claim follows from Definition 1.

Therefore, it follows from Theorem 2 and 4 that:

βSk(λ)≤ βS1(λ)

≤ TS · min
j1,j2∈(0,1):j1+j2=1

(j1βG4(λ/j1) + j2βG5(λ/j2)) (5.5)

We compute βG4(λ) and βG5(λ) similarly to [1]. That is, let µ0(x|σ) =

g(x|σ) and µ1(x|σ) = (1−q)g(x|σ)+qg(x−1|σ), where q = L/|X| is the prob-

ability that a record is included in the batch B of an SGD iteration and

g(x|σ) = 1√
2πσ2 e

−x2/2σ2 . Then, it holds:

βG3(λ) = logmax(E1(λ,σC),E2(λ,σC))

βG4(λ) = logmax(E1(λ,σG),E2(λ,σG))

where

E1(λ,σ) =
∫ ∞
−∞

µ0(x|σ) ·
(
µ0(x|σ)
µ1(x|σ)

)λ
dx

E2(λ,σ) =
∫ ∞
−∞

µ1(x|σ) ·
(
µ1(x|σ)
µ0(x|σ)

)λ
dx

The next theorem immediately follows from Theorem 2 and Theorem 4.

Theorem 5. Our differentially private generative model (DPGM) is

(min
λ

(
βK(λ) +βSk(λ)− logδ

)
/λ,δ)

-differentially private for any fixed δ, where βK(λ) and βSk(λ) are defined in

Eq. 5.2 and 5.5.

106Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

Dataset |X| |I|=m max ||x||1 avg ||x||1
MNIST 60,000 784 311.69 102.44

CDR 4,427,486 1303 422 11.42

TRANSIT 1,200,000 342 57 5.26

Table 5.2: The datasets used in our experiments: MNIST (images), CDR (call

detail records), and TRANSIT (transport records).

We use the convention that δ= 1/|X|, and compute ε numerically. Specif-

ically, ε= minλ
(
βK(λ) +βSk(λ)− logδ

)
/λ is minimized over integer values of

λ, where λ is usually no more than 100 in practice. The computation of βG3

and βG4 are performed through numerical integration, and it suffices to con-

sider 10 different values of j1 and j2 in order to have a sufficiently small value

of j1βG3(λ/`1) + j2βG4(λ/`2) in Eq. 5.5. Therefore, in practice, given δ, an

accurate approximation of ε can be obtained with negligible overhead.

5.3 Experimental Evaluation
In this section, we report the results of an experimental evaluation geared

to compute the exact privacy guarantees of DPGM (presented in Algorithm 3).

We also analyze its performance in terms of the quality of generated samples

as well as counting (linear) queries computed on the synthetic data. Count-

ing queries provide the basis of many data analysis and learning algorithms

(see [29] for examples). Finally, we measure the accuracy of our private kernel

k-means described in Algorithm 4.

5.3.1 Experimental setup

Datasets. We use three datasets for our evaluations, summarized in Table 5.2.

MNIST is a public image dataset [124], which includes 28× 28-pixel images

of hand-written digits, a total of 60,000 samples. We vectorize and binarize

each image to have binary data records with size m = 784. Throughout our

experiments, we assume that each of the 60,000 records originates from a

5.3. Experimental Evaluation 107

different person. We also use an anonymized CDR (Call Detail Record) dataset

provided to us by a cell phone operator. For this dataset, I represents the set

of cell towers of the operator in a large city with |X| = 4,427,486 customers.

We use a simplified version of the dataset, which contains the set of visited

cell towers per customer within the administrative region of the city over 128.1

km2, where the total number of towers is m= 1,303.

Finally, we experiment with a transit dataset, which we denote as TRAN-

SIT in the rest of the chapter. Due to non-disclosure agreement, we are unable

to provide specific details about the dataset, however, we can report that the

TRANSIT dataset include the transit history of passengers in the network

(with |X| = 1,200,000); here, I represents the set of m = 342 stations in a

public transportation network.

Experimental setup. For RBM, we set the number of hidden units to 200

and the learning rate is 0.01. The biases b and c are initialized to zeros, while

the initial values of the weights W are randomly chosen from a zero-mean

Gaussian with a standard deviation of 0.01. For VAE, the number of hidden

units is set to 200 with single layer encoder and decoder, and a bi-dimensional

latent space. We also used the rectifier activation function (ReLu) for all

neurons and the Adam optimizer [116]. For our purposes, it is enough to

compute β(λ) for λ≤ 32. We set the number of the private k-means iterations

to 20 and δ = 1/|X|. We also set Cmax = 10, w = 100 (in Algorithm 6), as

different values of these parameters do not have a strong impact on the results.

We implement DPGM with both RBM (in C++) and VAE (in Python).

Experiments are performed on a workstation running Ubuntu Server 16.04

LTS, with a 3.4 GHz CPU i7-6800K, 32GB RAM, and NVIDIA Titan X GPU

card.

5.3.2 Results with image dataset

Privacy guarantees. We report the privacy loss ε of DPGM (Algorithm 3)

in Figure 5.2 for the MNIST dataset. Recall that ε is computed from the noise

108Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

0 5 10 15 20
Epoch

0

1

2

3

4

5

E
p
si

lo
n

q=0.0033
q=0.0017
q=0.0008
q=0.0003

(a) Sampling probability q

(σG = 1.0, σK = 40.0)

0 5 10 15 20
Epoch

0

1

2

3

4

5

E
p
si

lo
n

σK = 10.0

σK = 20.0

σK = 40.0

(b) Clustering noise σK
(σG = 1.0, q = 0.0017)

0 5 10 15 20
Epoch

0

1

2

3

4

5

E
p
si

lo
n

σG = 1.0

σG = 2.0

σG = 4.0

(c) SGD noise σG
(σK = 40.0, q = 0.0017)

Figure 5.2: ε value as a function of the number of SGD training epochs for MNIST

(δ = 10−5,TK = 20)

level σC, σK, and σG, the sampling probability q, the number of k-means iter-

ations TK, and the number of SGD iterations TS using Theorem 5. Figure 5.2

shows ε depending on the number of SGD training epochs, where one epoch

consists of d1/qe SGD iterations. In Figure 5.2(a)–5.2(c), we fix σC = 4.0, and

report the value of ε as a function of the number of epochs. We note that

larger sampling probabilities (q) and more epochs yield larger values of ε, i.e.,

worse privacy guarantee. Figure 5.2(b)– 5.2(c) show that larger values of σK
and σG yield stronger privacy guarantees.

Clustering accuracy. Next, in Figure 5.3, we compare the private kernel

k-means (Algorithm 4) with RBF kernel with standard DP k-means [29].

We evaluate the unsupervised clustering accuracy (ACC) [214], where ACC =

5.3. Experimental Evaluation 109

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.1

0.2

0.3

0.4

0.5

A
C

C

RFF, d = 100

RFF, d = 150

RFF, d = 200

RFF, d = 400

RFF, d = 800

stand. DP k-means (no RFF)

Figure 5.3: Clustering accuracy as a function of ε on MNIST (δ = 10−5,TK = 20).

maxu |{x:x∈X∧label(x)=u(K(x))}|
|X| , label(x) is the ground-truth label of sample x2,

K(x) is the cluster assignment obtained by clustering algorithm K, and u is a

one-to-one mapping between cluster assignments and labels. The best mapping

can be obtained using the Hungarian algorithm. To make a fair comparison,

we fix Cb to
√
m = 28 for standard private k-means without RFF features,

and Cb = 1 for private kernel k-means with RFF features based on Theorem 3

– i.e., we do not call DPNorm in either of the algorithms. We compute the

clustering accuracy for different values of d depending on σK, which directly

yields the privacy bound ε using Eq. 5.2 and Theorem 2. Finally, we plot

the average accuracy over 100 runs as function of ε in Figure 5.3.3 Private

kernel k-means is clearly superior to standard DP k-means, as the difference

in clustering accuracy can be as large as 20%, especially for smaller values of

ε. Shorter RFF features (i.e., smaller d) result in larger accuracy for smaller

values of ε, whereas the reverse holds for larger ε. The reason is that the clus-

tering error is determined by the trade-off between (1) the perturbation error

due to the Gaussian noise, which is added to the cluster centers in Line 15 of

Algorithm 4, and (2) the approximation error caused by the low-dimensional

2For MNIST, these are digits ranging from 0 to 9.
3Standard deviation of accuracy is < 0.05 for all values of ε and d.

110Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

(a) Real samples (b) VAE w/o clustering

(c) VAE with clustering (d) RBM with clustering

Figure 5.4: Real MNIST samples and samples generated from DPGM with RBM

and VAE after 20 epochs (ε = 1.74,TK = 20). In (c) and (d), each row contains 8

samples generated from a cluster.

embedding z in Line 4 of Algorithm 4. In particular, the perturbation error

increases if ε decreases or d increases. Indeed, when the distance ||ẑ(x)− ĉj ||22
to each cluster center ĉj is computed in Line 12 of Algorithm 4, the total per-

turbation of this distance value is obtained by aggregating the noise values on

each coordinate of ĉj , and hence the perturbation error is proportional to the

size d of vector ĉj as well as to ε−1. On the other hand, larger d decreases the

approximation error introduced by z. One can find a good trade-off between

the approximation and the perturbation error by adjusting d and ε through

5.3. Experimental Evaluation 111

20% 40% 60% 80% 100%
Query Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

MWEM
DPGM

(a) ε= 2.0

20% 40% 60% 80% 100%
Query Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
v
e
ra

g
e
 R

e
la

ti
v
e
 E

rr
o
r

MWEM
DPGM

(b) ε= 1.0

Figure 5.5: Average relative error vs. ε for the CDR dataset (q = 2.2 · 10−5, δ =

4.4 ·10−6)

experiments using publicly available data. For the rest of experiments, we set

d to 200.

Selecting the optimal number of clusters k for kernel k-means can be qual-

itatively and visually done by relying on dimensionality reduction algorithms

(e.g., t-SNE [136]). To this end, one can use public data sampled from the

same underlying distribution, and therefore not requiring to make the param-

eter selection step differentially private. For MNIST we set k = 10, while we

select only one cluster for the CDR dataset. We investigate the effects of

different values of k for the transit dataset.

Synthetic samples. As training progresses, the synthetic samples produced

by the generative models should resemble the true samples. To evaluate model

quality, we show the synthetic samples obtained at epoch 20 in Figure 5.4 from

a Restricted Boltzmann Machine and a Variational Autoencoder with k = 10

clusters on MNIST. For this experiment, we set q = 0.0017 for a final privacy

budget ε of 1.74, and performed TK = 20 clustering iterations before training

the generative neural networks. Overall, the samples generated from VAE

(Figure 5.4(c)) provide better visual quality than the ones generated from the

RBM (Figure 5.4(d)). Note that the samples generated from the VAE without

our private clustering technique (Figure 5.4(b)) have bad visual quality.

112Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

20% 40% 60% 80% 100%
Query Length

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

Re
la

tiv
e

Er
ro

r
MWEM
DPGM k=1
DPGM k=5
DPGM k=10

(a) ε= 2.0

20% 40% 60% 80% 100%
Query Length

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

MWEM
DPGM k=1
DPGM k=5
DPGM k=10

(b) ε= 1.0

Figure 5.6: Average relative error vs. ε for the transit dataset (q = 10−4, δ = 10−6)

5.3.3 Results with CDR and transit dataset

We consider counting queries, which are specified by a predicate function

p : X → {0,1} and return the number of users in the dataset which satisfy

the given predicate p, i.e., Qp(X) = ∑
x∈X p(x). We evaluate the accuracy

of counting queries on a synthetic dataset generated by DPGM from our call-

data-record (CDR) dataset with roughly 4 million users and the transit dataset

with roughly 1 million users (see Table 5.2). A single query is defined by a

subset of tower cells, and returns the number of users in X who visited these

cells. We compare DPGM with MWEM [93], which is a de facto standard

differentially private mechanism to answer counting queries.

As done in previous work [213], we measure the utility of a counting query

Qp over the sanitized dataset X̂ by its relative error with respect to the actual

result over the raw dataset X. The relative error of Qp is thus computed

as |Qp(X̂)−Qp(X)|
max{Qp(X),s} , where s is a sanity bound that weight the influence of the

queries with small selectivities. Following the convention, the sanity bound is

set to 0.1% of the dataset size.

First, we examine the relative error of counting queries with respect to

privacy loss ε. 1,000 counting queries are randomly generated with different

number of tower cells, which we refer as the length of the query. Each query

set is divided into 5 subsets such that the query length of the i-th subset is

5.3. Experimental Evaluation 113

uniformly distributed in
[
1, i·max ||x||1

5

]
and each item is randomly drawn from

universe of items. Figure 5.5 reports the average relative error for each query

set. This shows that our approach clearly outperforms MWEM. We think this

is due to the use of advanced generative machine learning models, which learn

a better approximation of the real dataset than the Multiplicative Weight

update rule of MWEM. Furthermore, our approach relies on the moments

accountant [1], which provides a tighter bound on the privacy loss than the

one provided by the Exponential Mechanism in MWEM.

The error of DPGM ranges from 0.017 for 20% query length to 0.0012

for 100% when ε = 1.0. Weaker privacy guarantee (larger values of ε) lead to

slightly smaller errors (Figure 5.5(b)). By contrast, the error of MWEM ranges

from 0.11 to 0.05 even for ε = 2. After clipping each record to have L1-norm

avg||x||1 = 12, the sensitivity of queries is set to 12, and the iterations of the

MWEM algorithm is set to 50 [93]. Also note that the synthetic data produced

by DPGM allows the evaluation of arbitrary number of type of queries, not

only linear counting queries.

Finally, Figure 5.6 reports the average relative error for the transit dataset

with different number of clusters k. Our approach, whose average relative

error ranges from 0.09 to 0.02, significantly outperforms MWEM. However,

the number of clusters does not affect the error of counting queries on transit

dataset due to the fact that the private clustering fails to find meaningful

clusters for this type of data.

5.3.4 Multi-layer Variational Autoencoder

Finally, we report additional results for a VAE with a double layer encoder

and decoder. In Figure 5.7, we show the synthetic samples obtained at epoch

20 from a VAE with k = 10 clusters on MNIST.

Then, Figure 5.8(a) reports the average relative error for the CDR dataset,

while Figure 5.8(b) shows the average relative error for the transit dataset with

different number of clusters k.

Overall, we can observe that increasing the number of layers, and thus

114Chapter 5. Privacy-Preserving Data Release with Generative Neural Networks

(a) ε= 1.74 (b) ε= 2.0

Figure 5.7: Samples generated from a double layer VAE after 20 epochs. Each

row contains 8 samples generated from a cluster.

20% 40% 60% 80% 100%
Query Length

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Av
er

ag
e

Re
la

tiv
e

Er
ro

r MWEM
DPGM

(a) CDR dataset

20% 40% 60% 80% 100%
Query Length

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Re
la

tiv
e

Er
ro

r MWEM
DPGM k=1
DPGM k=5
DPGM k=10

(b) Transit dataset

Figure 5.8: Average relative error with ε= 1.0 for the CDR and transit datasets.

the capacity of the VAE, does not lead to better performance for this dataset.

Chapter 6

Evaluating Privacy Leakage of

Generative Models

As discussed in Section 3.2.3, previous work proposed passive and active

membership inference attacks – i.e., the presence of exact data points in train-

ing data – against machine learning classifiers [189, 222]. By contrast, in this

chapter, we set out to study how generating synthetic samples through gener-

ative models may lead to information leakage, hence, to violating privacy of

individuals contributing their (sensitive) data to train these models.

More specifically, aiming to perform membership inference, we train a

Generative Adversarial Network (GAN), described in Section 2.3.4, on samples

generated from the model under attack. Our intuition is that, if a generative

model overfits, then a GAN, which combines a discriminator and a generator,

should be able to detect this overfitting, even if it is not observable to a human,

since the discriminator is trained to learn statistical differences in distributions.

We leverage the ability of GANs to classify real and synthetic records in order

to recognize differences in the samples generated from the model, on inputs on

which it was trained versus those on which it was not.

We test our attacks on several state-of-the-art models such as Deep

The research presented in this chapter was joint work with a fellow PhD student Jamie

Hayes. The author equally contributed to the design of the attacks presented in Section 6.1,

and lead the work on the experimental evaluation of the attacks on the LFW dataset in Sec-

tions 6.2 and 6.3, as well as the evaluation of potential defenses described in Section 6.3.3.

116 Chapter 6. Evaluating Privacy Leakage of Generative Models

Convolutional GAN (DCGAN) [176], Boundary Equilibrium GAN (BE-

GAN) [25], and the combination of DCGAN with a Variational Autoencoder

(DCGAN+VAE) [122], using datasets with complex representations of faces

(LFW), objects (CIFAR-10), and medical images (Diabetic Retinopathy), con-

taining rich details both in the foreground and background. This represents a

much more challenging task for the attacker compared to simple datasets such

as MNIST, where samples from each class have very similar features.

6.1 Attacks Outline
In this section, we present our membership inference attacks against gen-

erative models.

6.1.1 Threat model

We consider an adversary that aims to infer whether a single known record

was included in the training set of a generative model. We distinguish between

two settings, namely, black-box and white-box attacks. In the former, the

attacker can only make queries to the target model under attack – which we

denote as the target model – and has no access to the internal parameters of

the model; in the latter, they also have access to the parameters of a trained

target model. In both settings, we allow the adversary to know the size of the

training set, but not its original data-points. Variants of the attack allow the

adversary to access some further side information, as discussed below. The

accuracy of the attack is measured as the fraction of the records correctly

inferred as members of the training set.

Note that, in order to evaluate the accuracy of our attacks, we will consider

an attacker attempting to distinguish data-points used to train the target

model, thus, we consider an attacker that has access to a dataset they suspect

contains the original training records. However, the construction of the attack

does not depend on access to any dataset. We assume the attacker knows the

size of the training set – as part of the information included with the target

model metadata or leaked following a data breach – but does not know how

6.1. Attacks Outline 117

data-points are split into training and test sets.

In the black-box attack setting, we assume the attacker does not have prior

or side information about training records or the target model. In particular,

the attack proceeds with no knowledge of the following:

1. Target model parameters and hyper-parameters: No access to network

weights from the trained target model, nor to hyper-parameters such as

regularization parameters or number of epochs used to train the target

model.

2. Target model architecture: The attacker has no knowledge of the archi-

tecture of the target model.

3. Dataset used to train the target model: No knowledge of data-points used

to train the target model, or the type of data-points used in training, since

this is inferred from sampling the target model at inference time. Note

that, by contrast, the membership inference attack on discriminative

models by Shokri et al. [189] does require some information about the

dataset, e.g., the syntactic format of data records used in training, in

order to generate synthetic samples used in the attack.

4. Prediction values: Shokri et al. [189] show that predictions scores leak

information used to perform membership inference attacks. However,

due to the very nature of generative models, the attacker cannot generate

prediction scores directly from the target model.

6.1.2 White-box attack

We now present our white-box attack, illustrated in Figure 6.1. To

evaluate the attack, here we assume that an attacker Awb has access to the

trained target model, namely, a GAN – i.e., a generator Gtarget and a dis-

criminator Dtarget. We also assume the attacker has access to a dataset,

X = {x1, . . . ,xm+n}, which they suspect contains data-points used to train

118 Chapter 6. Evaluating Privacy Leakage of Generative Models

Figure 6.1: High-level Outline of the White-Box Attack.

Figure 6.2: White-Box Prediction Method: The attacker inputs data-points to the

Discriminator D (1), extracts the output probabilities (2), and sorts them (3).

the target model, where n is the size of the training set, and m is the number

of data-points that do not belong to the training set.

The target model has been trained to generate samples that resemble

the training set samples. Awb creates a local copy of Dtarget, which we

refer to as Dwb. Then, as shown in Figure 6.2, Awb inputs all samples

X = {x1, . . . ,xm+n} into Dwb, which outputs the resulting probability vector

p = [Dwb(x1), . . . ,Dwb(xm+n)]. If the target model overfitted on the training

data, Dwb will place a higher confidence value on samples that were part of the

training set. Awb sorts their predictions, p, in descending order and takes the

samples associated with the largest n probabilities as predictions for members

of the training set.

Note that the attacker does not need to train a model; rather, it relies on

internal access to the target model, from which the attack can be launched.

6.1. Attacks Outline 119

(a) (b) (c)

Figure 6.3: High-level overview of the (a) black-box attack with no auxiliary

knowledge, and (b) Discriminative and (c) Generative black-box attack with limited

auxiliary attacker knowledge.

6.1.3 Black-box attack with no auxiliary knowledge

In the black-box setting, we assume that the attacker Abb does not have

access to the target model parameters. Thus, Abb cannot directly steal the

discriminator model from the target as in the white-box attack. Furthermore,

while in the white-box attack we restrict the target model to be a GAN, here

we do not, and the target model may not have an associated discriminative

model (as with VAEs). Again, to evaluate the attack, we assume the attacker

has access to a dataset, X = {x1, . . . ,xm+n}, which they suspect contains data-

points used to train the target model, where n is the size of the training set.

However, the attacker has no knowledge of how the training set was constructed

from X, thus, they do no have access to the true labels of samples from the

dataset and so cannot train a model using a discriminative approach. Instead,

Abb trains a GAN in order to re-create the target model locally and, in the

process, creates a discriminator Dbb, which detects overfitting in the generative

target model Gtarget. We illustrate the attack in Figure 6.3(a).

More specifically, Abb locally trains a GAN (Gbb, Dbb) using queries from

the target, i.e., Abb trains the local GAN on samples generated by Gtarget.

Note that as the black-box attack depends only on samples generated by the

target model, Gtarget can be any generative model. We assume Abb has nei-

ther knowledge nor control over the source of randomness used to generate the

120 Chapter 6. Evaluating Privacy Leakage of Generative Models

samples generated by Gbb. After the GAN has been trained, the attack pro-

ceeds to the white-box setting, i.e., Abb inputs data-points X into Dbb, sorts

the resulting probabilities, and takes the largest n points as predictions for the

training set (as shown in Figure 6.2).

6.1.4 Black-box attack with limited auxiliary knowledge
In the black-box attack presented above, we assume that Abb has no ad-

ditional knowledge about subsets of members of the dataset. However, we

also study the case where an attacker could leverage limited additional side

information about the training set. This is a realistic setting, which has been

considered extensively in the literature. For instance, social graph knowl-

edge has been used to de-anonymize social networks [156]. Overall, auxil-

iary/incomplete knowledge of sensitive datasets is a common assumption in

literature [175, 108].

Access to side information about the training set means that the attacker

can “augment” the black-box attack. We consider two attack settings: a gener-

ative and a discriminative one. In both settings, we consider a scenario where

the attacker has incomplete knowledge of members of the test dataset, the

training dataset, or both.

Discriminative setting. We consider an attacker that trains a simple dis-

criminative model to infer membership of the training set, as illustrated in Fig-

ure 6.3(b). This is feasible since the attacker now has access to membership

binary labels, i.e., whether data points belong to the training set or not. Thus,

they do not need to train a generative model to detect overfitting. Within this

setting, we consider two scenarios:

(1) The attacker has limited auxiliary knowledge of samples that were not

used to train the target model.

(2) The attacker has limited auxiliary knowledge of both training set and

test set samples.

In both cases, the general method of attack is the same: an attacker trains a

6.1. Attacks Outline 121

local model to detect overfitting in the target model. In (1), the discriminator,

D, is fed samples from this auxiliary set, labeled as fake samples, and samples

generated by the target model, labeled as real samples. If the target model

overfits the training set, D will learn to discriminate between training and

non-training samples. In (2), D is fed both target generated samples and

the auxiliary training samples, labeled as real samples, and samples from the

auxiliary test set, labeled as fake samples. Once the attacker has trained

a discriminator, the attack again proceeds as described in Figure 6.2. Note

that we have to consider that the attacker knows some test samples (i.e., fake

samples) in order to properly train a binary discriminator.

Generative setting. We also consider a generative attack, as outlined in Fig-

ure 6.3(c), again, as per two scenarios:

(1) The attacker has limited auxiliary knowledge of samples that were used

to train the target model.

(2) The attacker has limited auxiliary knowledge of both training set and

test set samples.

With both, the attacker trains a local model – specifically, a GAN – that

aims to detect overfitting in the target model. In (1), the discriminator of

the attacker GAN, Dbb, is trained using samples generated by Gbb, labeled

as fake samples, and both samples from the auxiliary training set and target

generated samples, labeled as real samples. Intuitively, we expect the attacker

model to be stronger at recognizing overfitting in the target model, if it has

auxiliary knowledge of samples on which it was originally trained. In (2), Dbb

is trained on samples generated by Gbb and samples from auxiliary set of test

ones, labeled as fake samples, and samples generated by the target model and

samples from the auxiliary training set, labeled as real ones. The attacker GAN

is trained to learn to discriminate between training and non-training samples

directly. Again, once the attacker has trained their model, data-points from

X are fed into Dbb, and their predictions are sorted as described in Figure 6.2.

122 Chapter 6. Evaluating Privacy Leakage of Generative Models

(a) LFW,

top ten classes

(b) LFW,

random 10%

(c) CIFAR-10,

random 10%

Figure 6.4: Real samples.

6.2 Evaluation
In this section, we present an experimental evaluation of the attacks de-

scribed above.

6.2.1 Experimental setup

Testbed. Experiments are performed using PyTorch1 on a workstation run-

ning Ubuntu Server 16.04 LTS, equipped with a 3.4GHz CPU i7-6800K, 32GB

RAM, and an NVIDIA Titan X GPU card.

Settings. For white-box attacks, we measure membership inference accuracy

at successive epochs of training the target model, where one epoch corresponds

to one round of training on all training set inputs.2 For black-box attacks, we

fix the target model and measure membership inference accuracy at successive

training steps of the attacker model, where one training step is defined as one

iteration of training on a mini-batch of inputs. The attacker model is trained

using soft and noisy labels as suggested in [183], i.e., we replace labels with

random numbers in [0.7,1.2] for real samples, and random values in [0.0,0.3]

for fake samples. Also, we occasionally flip the labels when training the dis-

criminator. These modifications to the GAN have been shown to stabilize

training in practice [52].
1https://github.com/pytorch/pytorch
2We update model weights after training on mini-batches of 32 samples.

https://github.com/pytorch/pytorch

6.2. Evaluation 123

Datasets. We start by testing our attacks on two popular machine learning

datasets, namely, Labeled Faces in the Wild (LFW) [102] and CIFAR-10 [119],

then, in Section 6.2.7, we present a case-study evaluation on a medical image

dataset, i.e., the diabetic retinopathy (DR) dataset [110]. LFW includes 13,233

images of faces collected from the Web, while CIFAR-10 consists of 60,000

32x32 color images in 10 classes, with 6,000 images per class. For both of them,

we randomly choose 10% of the dataset for the training set. Note that LFW

is unbalanced, i.e., some people appear in multiple images, while others only

appear once. We also perform experiments so that the training set is chosen

to include the ten most popular classes of people in terms of number of images

they appear in, which amounts to 12.2% of the LFW dataset. Intuitively, we

expect that models trained on the top ten classes will overfit more than the

same models trained on random 10% subsets, as we are training on a more

homogeneous set of images. Figure 6.4 shows real samples from LFW and

CIFAR-10.

Finally, the DR dataset consists of 88,702 high-resolution retina images

taken under a variety of image conditions. From DR, we select images that

labeled as having moderate to proliferate diabetic retinopathy presence, and

use them to train the generative target model.

Models. Since the introduction of GANs [87], a few variants have been pro-

posed to improve training stability and sample quality. In particular, deep

convolutional generative adversarial networks (DCGANs) [176] combine the

GAN training process with convolutional neural networks (CNNs). CNNs are

considered the state-of-the-art for a range image recognition tasks and, by

combining CNNs with the GAN training processes, DCGANs perform well

at unsupervised learning tasks such as generating complex representations of

objects and faces [176].

GANs have also been combined with VAEs [122], by collapsing the gener-

ator (of the GAN) and decoder (of the VAE) into one, the model uses learned

feature representations in the GAN discriminator as the reconstructive error

124 Chapter 6. Evaluating Privacy Leakage of Generative Models

term in the VAE. Experimentally, it has been shown that combining the DC-

GAN architecture with a VAE yields more realistic generated samples [164].

More recently, Boundary Equilibrium GAN (BEGAN) [25] have been proposed

as an approximate measure of convergence. Loss terms in GAN training do not

correlate with sample quality, making it difficult for a practitioner to decide

when to stop training. This decision is usually performed by visually inspect-

ing generated samples. BEGAN proposes a new method for training GANs by

changing the loss function. The discriminator is an autoencoder and the loss

is a function of the quality of reconstruction achieved by the discriminator on

both generated and real samples. BEGAN produces realistic samples [25], and

is simpler to train since loss convergence and sample quality is linked with one

another.

We evaluate our attacks using, as the target model, DCGAN, DC-

GAN+VAE, and BEGAN, while fixing DCGAN as the attacker model. This

choice of models is supported by recent work by Lucic et al. [135], who show

that no other GAN model performs significantly better than our choices. Fur-

thermore, they show VAE models perform significantly worse than any GAN

variant.

6.2.2 Naïve approaches

We begin our evaluation with a naïve Euclidean distance based attack,

which further motivates the use of more sophisticated machine learning tech-

niques. Given a sample generated by a target model, the attacker computes

the Euclidean distance between the generated sample and every real sample

in the dataset. Repeating this multiple times for newly generated samples,

the attacker computes an average distance from each real sample, sorts the

average distances, and takes the smallest n distances (and the associated real

samples) as the guess for the training set, where n is the size of the training

set.

We perform this attack on a target model (DCGAN) trained on a random

10% subset of CIFAR-10 and a random 10% subset of LFW. Figure 6.5 clearly

6.2. Evaluation 125

200 400 600 800 1000 1200 1400 1600

Cloud queries

0.06

0.08

0.10

0.12

0.14

A
cc

ur
ac

y

CIFAR-10
LFW
random

Figure 6.5: Euclidean attack results for DCGAN target model trained on a random

10% subset of CIFAR-10 and LFW.

0 5000 10000 15000 20000 25000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

DCGAN

random

Figure 6.6: Black-box attack results with 10% auxiliary attacker training set knowl-

edge used to train a DCGAN shadow model for DCGAN target model trained on a

random 10% subset of LFW.

shows that this Euclidean attack does not perform better than if the attacker

were to randomly guess which real samples were part of the original training

set.

We also report on the results of a black-box setting where 10% of training

set samples from LFW are used to train a shadow model, inspired by the

techniques of Shokri et al. [189] – see Figure 6.6. Samples generated by this

model are then injected into the attacker model together with the samples

generated by the target model. More specifically, at training time, each mini-

batch is composed of synthetic samples generated either by the target model

or by the shadow model. However, this attack, only yields around 18% of

accuracy, with no improvements during training.

126 Chapter 6. Evaluating Privacy Leakage of Generative Models

0 100 200 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

BEGAN
DCGAN
DCGAN+VAE
random

(a) LFW, top ten classes

0 100 200 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) LFW, random 10% subset

0 100 200 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) CIFAR-10, random 10% subset

Figure 6.7: Accuracy of white-box attack with different datasets and training sets.

6.2.3 White-box attack

We now present the results of our evaluation of the white-box attack de-

scribed in Section 6.1.2 on LFW and CIFAR-10. For the LFW dataset, we

build the training set either as a random 10% subset of the dataset or the top

ten classes. For CIFAR-10, the training set is a random 10% subset of the

dataset. The target models we implement are DCGAN, DCGAN+VAE, and

BEGAN. In the rest of this section, we will include a baseline in the plots (red

dotted line) that corresponds to the success of an attacker randomly guessing

which samples belong to the training set. We observe that both DCGAN and

DCGAN+VAE are vulnerable to the white-box attack. For DCGAN and DC-

GAN+VAE target models trained for 100 epochs, the attacker infers training

set membership with 80% accuracy, and for models trained for 400 epochs –

with 98% and 97% accuracy, respectively. The BEGAN target model does

6.2. Evaluation 127

overfit, although to a lesser extent: after 400 epochs, an attacker with white-

box access to the BEGAN target model can infer membership of the training

set with 60% accuracy. In Figure 6.7(b), we report the results of white-box

attacks against a target model trained on a random 10% subset of the LFW

dataset. Similar to Figure 6.7(a), both DCGAN and DCGAN+VAE are vul-

nerable: when these are trained for 250 epochs, an attacker can achieve perfect

training set membership inference. BEGAN performs similar to the top ten

classes white-box experiment, achieving 62% accuracy after 400 epochs. Fi-

nally, Figure 6.7(c) plots the accuracy of the white-box attack against a target

model trained on a random 10% subset of CIFAR-10.

For DCGAN, results are similar to DCGAN on LFW, with perfect train-

ing set membership inference after 400 epochs. However, DCGAN+VAE does

not leak information (does not overfit) until around 250 epochs, where accu-

racy remains relatively steady, at 10-20%. Instead, after 250 epochs, the model

overfits, with accuracy reaching 80% by 400 epochs. BEGAN, while producing

quality samples, does not overfit, with final training set membership inference

accuracy of 19%, i.e., only 9% better than random guess. Due to the lim-

ited accuracy of BEGAN in comparison to other models, we discard it as a

target model for black-box attacks as it does not seem to be vulnerable to

membership inference attacks. Note that GAN models need to be trained for

hundreds of epochs before reaching good samples quality. Indeed, the original

DCGAN/BEGAN papers report 2x and 1.5x the number of network updates

(when adjusted for training set size) as our white-box attack, to train DCGAN

and BEGAN, respectively.

In summary, we conclude that white-box attacks infer the training set

with up to perfect accuracy when DCGAN and DCGAN+VAE are the target

models. On the other hand, BEGAN is less vulnerable to white-box attacks,

with up to 62% accuracy.

128 Chapter 6. Evaluating Privacy Leakage of Generative Models

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

DCGAN
DCGAN+VAE
random

(a) LFW, top ten classes

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) LFW, random 10% subset

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(c) CIFAR-10, random 10% subset

Figure 6.8: Accuracy of black-box attack on different datasets and training sets.

6.2.4 Black-box attack with no auxiliary knowledge

Next, we present the results of the black-box attacks (cf. Section 6.1.3)

on LFW and CIFAR-10. We assume the attacker has no knowledge of the

training or test sets other than the size of the original training set. Once

again, for LFW, the training set is either a random 10% subset of the dataset

or the top ten classes, while, for CIFAR-10, the training set is always a ran-

dom 10% subset of the dataset. The target models we implement are DCGAN

and DCGAN+VAE (fixed at epoch 400), and the attacker model uses DC-

GAN. Figure 6.8(a) plots the results of a black-box attack against a target

model trained on the top ten classes of the LFW dataset. After training the

attacker model on target queries, the attack achieves 63% training set member-

ship inference accuracy for both DCGAN and DCGAN+VAE target models.

Surprisingly, the attack performs equally well when the target model differs

6.2. Evaluation 129

from the attack model as when the target and attack model share the same

architecture. This highlights the fact that the attacker does not need to have

knowledge of the target model architecture in order to perform the attack.

In Figure 6.8(b), the results are with respect to a target model trained on

a random 10% subset of the LFW dataset. Once again, we find that DCGAN

and DCGAN+VAE target models are equally vulnerable to a black-box attack.

An attacker with no auxiliary information of the training set can still expect

to perform membership inference with 40% (38%) accuracy for the DCGAN

(DCGAN+VAE) target model.

Finally, Figure 6.8(c) plots the accuracy of a black-box attack against a

target model trained on a random 10% subset of the CIFAR-10 dataset. For

the DCGAN+VAE target model, accuracy reaches 20% after 1,000 training

steps and stays flat. For the DCGAN target model, the attacker can infer

training set membership with 37% accuracy, with accuracy improving steadily

throughout the attacker model training process.

We observe that the difference in attack success between the DCGAN and

DCGAN+VAE target models with CIFAR-10 and the similar success of the

two models with LFW occur in both white-box and black-box attacks. As ex-

pected, the best results are obtained when the attacker and target model have

the same architecture. However, the attack does not overwhelmingly suffer

under differing architectures. In fact, in LFW experiments there is a negligible

difference in attack success, and, in the CIFAR-10 black-box experiments, the

difference in accuracy is approximately 17%.

In summary, we conclude that our black-box attacks are less successful,

compared to white-box attack, in inferring membership, but perform similarly

against different target model architectures.

6.2.5 Black-box attack with limited auxiliary knowledge

As discussed in Section 6.1.4, we also consider black-box attacks where the

attacker has some limited auxiliary knowledge of the dataset. We now present

the results of these attacks on random 10% subsets of LFW and CIFAR-10

130 Chapter 6. Evaluating Privacy Leakage of Generative Models

0 100 200 300 400

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CIFAR-10 : 20% test set knowledge
CIFAR-10 : 30% training & test set knowledge
LFW : 20% test set knowledge
LFW : 30% training & test set knowledge

Figure 6.9: Membership inference accuracy using a discriminative model, when the

attacker has knowledge of (i) 20% of the test set, or (ii) 30% of both training and

test sets. In (i), randomly guessing the training set corresponds to 14% accuracy, in

(ii), to 12% accuracy.

with DCGAN attacker and target models (fixed at epoch 400).

We consider different scenarios where the attacker has knowledge of 20–

30% of the training set, 20-30% of the test set, or both. Nonetheless, the total

number of samples of which the attacker has knowledge is quite modest. For

LFW, 20% of the random 10% training set corresponds to 264 out of 1,323

images, 20% of the test set to 2,382 out of 11,910 images, whereas, for CIFAR-

10, 20% of the random 10% training set amounts to 1,200 out of 6,000 images,

and 20% of the test set to 10,000 out of 50,000 images. An attacker with

auxiliary information of the training and test set has access to labels, and

therefore may not need to train a generative model to perform a membership

inference attack on a generative model. We also show that, while the attacker

can train a discriminative model to perform membership inference, such an

approach produces worse results than the generative method.

If an attacker has access to true labels within the dataset, they can train

a discriminative model on these samples in order to learn to classify train-

ing samples correctly. For both LFW and CIFAR-10 DCGAN target models,

trained on a random 10% subset of the dataset, we consider two settings:

(i) the attacker has 20% knowledge of the test set;

6.2. Evaluation 131

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

delayed = 0 steps
delayed = 1000 steps
random

(a) DCGAN

0 10000 20000 30000 40000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

delayed = 0 steps
delayed = 1000 steps
random

(b) DCGAN+VAE

Figure 6.10: Black-box attack results with 20% attacker training set knowledge for

DCGAN/DCGAN+VAE target models, trained on a random 10% subset of LFW,

for different delays at which auxiliary knowledge is introduced into the attacker

model training.

(ii) the attacker has 30% knowledge of both the training and test set.

We use the discriminator from DCGAN as the discriminative model trained

by the attacker. In (i), we pass test set samples to the discriminator labeled as

fake samples, and target generated ones labeled as real ones. In (ii), we pass

test set samples to the discriminator labeled as fake ones, and target generated

and training set samples labeled as real ones.

In Figure 6.9, we plot the accuracy results for both settings, showing that

the attack fails with both datasets when the attacker has only test set knowl-

edge, performing no better than random guessing. Whereas, if the attacker

has both training and test knowledge, with LFW, the attacker achieves 50%

accuracy, while, for CIFAR-10, accuracy reaches 33%. Note that this approach

does not improve on CIFAR-10 black-box results with no auxiliary knowledge,

and only marginally improves on LFW results. As a result, we also experi-

ment with generative approaches to black-box attacks with auxiliary attacker

knowledge, as discussed next.

We consider the same set of experiments with similar settings for attacker

knowledge as in the discriminative approach; the only difference is that in

setting (i) we now assume the attacker has 20% knowledge of the training set

132 Chapter 6. Evaluating Privacy Leakage of Generative Models

0 5000 10000 15000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
LFW
CIFAR-10
random

(a)

0 5000 10000 15000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

LFW
CIFAR-10
random

(b)

Figure 6.11: Black-box results when the attacker has (a) knowledge of 20% of

the training set or (b) 30% of the training set and test set. The training set is a

random 10% subset of the LFW or CIFAR-10 dataset, and the target model is fixed

as DCGAN.

rather than the test set. We use DCGAN as the generative attacker model.

Specifically, we consider two settings in which:

(1) the attacker has 20% knowledge of the training set,

(2) the attacker has 30% knowledge of both the training and test set.

In all the experiments, we introduce a delay of 1000 training steps before the

attacker model uses the auxiliary attacker knowledge. We found that intro-

ducing the auxiliary knowledge early in training process of the attacker model

resulted in a weaker discriminator – see Figure 6.10. Figure 6.11(a) shows

results for setting (1): clearly, there is a substantial increase in accuracy for

the LFW dataset, from 40% attack accuracy to nearly 60%. However, there

is no increase in accuracy for the CIFAR-10 dataset. Thus, we conclude that

setting (1) does not generalize. Figure 6.11(b) shows results for setting (2); for

both LFW and CIFAR-10 there is a substantial improvement in accuracy. Ac-

curacy for the LFW experiment increases from 40% (with no auxiliary attacker

knowledge) to 60%, while, for CIFAR-10, from 37% to 58%.

Thus, we conclude that, even a small amount of auxiliary attacker knowl-

edge can lead to greatly improving membership inference attacks.

6.2. Evaluation 133

(a) White-box attack. (b) Black-box attack.

Figure 6.12: Accuracy curves and samples at different stages of training on top ten

classes from the LFW dataset, showing a clear correlation between higher accuracy

and better sample quality.

(a) Real samples (b) Target samples (c) Attacker samples

Figure 6.13: Various samples from the real dataset, target model, and black-box

attack using the DCGAN target model on LFW, top ten classes.

6.2.6 Analysis

Aiming to better understand the relationship between membership infer-

ence and training performance, we report, in Figure 6.12, the attack accuracy

and samples generated at different training stages by the target DCGAN gen-

erator in the white-box attack Figure 6.12(a)) and the attacker DCGAN gen-

erator in the black-box attack Figure 6.12(b)) on the top ten classes from the

LFW dataset. The plots demonstrate that accuracy correlates well with the

visual quality of the generated samples. In particular, samples generated by

the target yield a better visual quality than the ones generated by the attacker

generator during the black-box attack, and this results in higher member-

134 Chapter 6. Evaluating Privacy Leakage of Generative Models

ship inference accuracies. Overall, the samples generated by both attacks at

later stages look visually pleasant, and fairly similar to the original ones. Our

attacks have been evaluated on datasets that consist of complex representa-

tions of faces (LFW) and objects (CIFAR-10). As shown in Figure 6.13(a),

real samples from LFW contain rich details both in the foreground and back-

ground. We do not observe any large deviations in images within datasets,

excluding the possibility that the attack performs well due to some training

samples being more easily learned by the model, and so predicting with higher

confidence. Learning the distribution of such images is a challenging task com-

pared to simple datasets such as MNIST. In fact, our black-box attack is able

to generate realistic samples (see differences between the target model samples

in Figure 6.13(b) and the attacker samples in Figure 6.13(c)).

6.2.7 Evaluation on Diabetic Retinopathy dataset

Finally, we present a case study of our attacks on the Diabetic Retinopa-

thy (DR) dataset, which consists of high-resolution retina images, with an

integer label assigning a score of how much the participant suffers from di-

abetic retinopathy. Diabetic retinopathy is a leading cause of blindness in

the developed world, with detection currently performed manually by highly

skilled clinicians. The machine learning competition site kaggle.com has eval-

uated proposals for automated detection of diabetic retinopathy, and submis-

sions have demonstrated high accuracies, thus removing the need for the time-

consuming process of manual detection. We choose this additional dataset

since the generation of synthetic medical images through generative models is

nowadays a powerful method to produce large numbers of high-quality sample

data on which machine learning models can be trained. Thus, our attacks

can raise serious privacy concerns, in practice, in sensitive settings like those

involving medical data.

As discussed in Section 6.2.1, the DR dataset consists of 88,702 high-

resolution retina images under various imaging conditions. Each image has an

associated integer label assigning how present diabetic retinopathy is within

kaggle.com

6.2. Evaluation 135

(a) Real sample with no pres-

ence of diabetic retinopathy.

(b) Real sample with high

presence of diabetic retinopa-

thy.

(c) Selection of target gen-

erated samples classified with

high confidence as belonging

to the training set by both

white-box and black-box at-

tacks.

Figure 6.14: Real and generated diabetic retinopathy dataset samples.

the retina, from 0 to 4. We train the generative target model on images with

labels 2, 3 and 4, i.e., images with mild to severe cases of diabetic retinopa-

thy. These make up 19.7% of the dataset. Figure 6.14 shows real and target

generated samples of retina images.

The results of the white-box attack are reported in Figure 6.15(a): the

attack is overwhelmingly successful, nearing 100% accuracy at 350 training

epochs. Then, Figure 6.15(b) shows the black-box attacks results, when an

attacker has no auxiliary knowledge, and when the attacker has 30% training

136 Chapter 6. Evaluating Privacy Leakage of Generative Models

0 100 200 300 400 500

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

white-box
random

(a) White-box attack.

0 10000 20000 30000 40000 50000

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

black-box
black-box with auxiliary knowledge
random

(b) Black-box attack.

Figure 6.15: Accuracy curves of attacks against a DCGAN target model on the

Diabetic Retinopathy dataset.

Attack LFW CIFAR-10 DR

White-box 100% 100% 95%

Black-box with no knowledge 40% 37% 22%

Black-box with limited knowledge 60% 58% 81%

Table 6.1: Accuracy of the best attacks on random 10% training set for LFW and

CIFAR-10, and for the diabetic retinopathy (DR) experiments.

and test set auxiliary knowledge. A no-knowledge black-box attack does not

perform very well, while, with some auxiliary knowledge, it approaches the

accuracy of the white-box attack, peaking at over 80% after 35K training

steps.

6.3 Discussion
Overall, our analysis shows that state-of-the-art generative models are

vulnerable against membership inference attacks. In Table 6.1, we summarize

the best accuracy results obtained for experiments on random 10% training

sets (LFW, CIFAR-10) and the diabetic retinopathy (DR) dataset experi-

ments. We note that, for white-box attacks, the attacker successfully infers

the training set with 100% accuracy on both the LFW and CIFAR-10 datasets,

and 95% accuracy for DR dataset. Accuracy drops to 40% on LFW, 37% on

CIFAR-10 and 22% on DR for black-box attacks with no auxiliary knowledge,

however, even with a small amount of auxiliary knowledge, the attacker boost

performance up to 60% on LFW, 58% on CIFAR-10 and 81% on DR. (A ran-

6.3. Discussion 137

dom guess corresponds to 10% accuracy on LFW and CIFAR-10, and 20%

on DR.) Furthermore, our attacks are robust against different target model

architectures.

In this section, we first discuss the computational costs of our attacks,

then, we measure the sensitivity of the attacks to training set size and predic-

tion ordering, and study their robustness against possible defenses.

6.3.1 Cost of the attacks

Finally, we quantify the cost of the attacks in terms of computational and

time overhead, and estimate monetary costs.

To perform the attacks, the attacker needs a GPU, which can be obtained

for a cost in the order of $100. The attacks have minimal running time over-

heads: for the white-box attack, complexity is negligible as we only query a

pre-trained target model to steal discriminator model parameters, whereas,

for black-box, one step of training the attacker model takes 0.05 seconds in

our testbed. Black-box attacks with no auxiliary attacker knowledge yield the

best results after 50,000 training steps, therefore, an attacker can expect best

results after approximately 42 minutes with 32 × 50,000 queries to the target

model (since we define one training step as one mini-batch iteration, with 32

inputs per mini-batch). For attacks with auxiliary knowledge, the best results

are reached after 15,000 training steps, thus, approximately 13 minutes.

We also estimate monetary cost based on current discriminative MLaaS

pricing structures from Google.3 At a cost of $1.50 per 1,000 target queries,

after an initial 1,000 free monthly queries, the black-box attack with no aux-

iliary knowledge would cost $2,352, while the black-box attack with auxiliary

knowledge $672. Therefore, we consider our attacks to have minimal costs,

especially considering the potential severity of the information leakage they

enable.

3https://cloud.google.com/vision/pricing

https://cloud.google.com/vision/pricing

138 Chapter 6. Evaluating Privacy Leakage of Generative Models

10 50 100 350 500
Top X classes

0

10

20

30

40

50
Im

pr
ov

em
en

t o
ve

r r
an

do
m

 g
ue

ss
in

g
(%

)

20%
40%
60%
80%
100%

(a) LFW Top X classes

10 20 30 50 75 90
Random % of dataset

0

10

20

30

40

Im
pr

ov
em

en
t o

ve
r r

an
do

m
 g

ue
ss

in
g

(%
)

20%
40%
60%
80%
100%

(b) LFW, random X% subset

10 20 30 50 75 90
Random % of dataset

0

10

20

30

40

Im
pr

ov
em

en
t o

ve
r r

an
do

m
 g

ue
ss

in
g

(%
)

20%
40%
60%
80%
100%

(c) CIFAR-10 random X% subset

Figure 6.16: Improvements over random guessing, in a black-box attack, as we vary

the size of the training set, and consider smaller subsets for training set predictions.

6.3.2 Sensitivity to training set size and prediction or-

dering
Aiming to measure the dependency between attack performance and the

training set size, we also experiment with varying training set sizes in the DC-

GAN target and attacker model setting. Figure 6.16 shows how the improve-

ment of the attack degrades as the relative size of the training set increases.

Note that we only include black-box attack results, as all white-box attacks

achieve almost 100% accuracy regardless of training set size. Overall, we find

that there is a commonality in the experiments: black-box attacks on 10%

of the dataset achieve an improvement of 40–55%, and, as we increase the

number of data-points used to train the target model, the attack has smaller

and smaller improvements over random guessing. The largest increases are in

6.3. Discussion 139

the setting of Figure 6.16(a), where data-points are more homogeneous and

so overfitting effects are compounded. When the training set is 90% of the

total dataset used in the evaluation of the attack, the attack has negligible

improvements over random guessing.

We believe that this is due to: (1) the larger number of training data-

points yields a well-fitted model that does not leak information about training

records, and (2) a small number of data-points within the training set do not

leak information, therefore, as we increase the size of the training set, the

inability to capture these records becomes more costly, resulting in smaller

improvements in attack performance. If (1) were true, we would see smaller

improvements for larger training sets, regardless of the total size of the dataset;

however, experiments on both LFW and CIFAR-10, which consist of different

training sizes, report similar improvements over random guessing. Addition-

ally, white-box attacks are not affected by increasing the training set size,

which would be the case if the model did not overfit and thus leak information

about training records. Hence, we believe that a small number of training

records are inherently difficult to capture, and so improvements over random

guessing for larger training set sizes are more difficult to achieve since the

majority of samples are used to train the target model. We also examine the

attack sensitivity to the ordering of the data-point predictions. So far, the only

prior knowledge the attacker has is the approximate size of the training set. If

there is a clear ordering of data-points predictions, with training records sitting

at the top of the ordering, and non-training records lower down, an attacker

can use this information to identify training records without side knowledge of

training set size. They can simply place a confidence score relative to where

in the ordering a data-point predictions sits. Figure 6.16 shows, for varying

training set sizes, how many training records lie in the top 20%, 40%, 60%,

80%, and 100% of the guessed training set. We observe that, in all experi-

mental settings, accuracy for the top 20% is highest, with scores decreasing

as the attacker considers a larger number of data-points as candidates for the

140 Chapter 6. Evaluating Privacy Leakage of Generative Models

training set. Thus, training to non-training samples follow a structured order-

ing in the attacker’s predictions, which can be exploited to infer membership

when the attacker has no knowledge of the original training set size by setting

a threshold on the minimum confidence of a training point.

6.3.3 Defenses

Possible defense strategies against membership inference discussed

in [189], such as restricting the prediction vector to the top k classes, coarsen-

ing and increasing the entropy of the prediction vector, are not well suited to

our attacks, since generative models do not output prediction vectors. How-

ever, regularization techniques could possibly be applied to generative models

to produce more robust and stable training as well as more diverse and visually

pleasant samples.

Weight Normalization and Dropout. To this end, we consider two tech-

niques, namely, Weight Normalization [184] and Dropout [194], as possible

defense mechanisms and evaluate their impact on our attacks.4 The former is

a re-parameterization of the weights vectors that decouples the length of those

weights from their direction, and it is applied to all layers in both generator

and discriminator in the target model. Whereas, the latter can be used to pre-

vent overfitting by randomly dropping out (i.e., zeroing) connections between

neurons during training. In particular, we apply Dropout, with probability

0.5, to all the layers in the discriminator.

In Figure 6.17, we measure the improvement over random guessing for the

white-box attack against the target model trained on LFW using either Weight

Normalization or Dropout. We find that Dropout is more effective, with im-

provements over random guessing ranging from 70% on top 10 classes to 23%

on top 500 classes. Weight Normalization only yields improvements of, respec-

tively, 88% and 46%, which are very close to the target model trained with no
4Note that we do not compare models with and without Batch Normalization [104],

as its inclusion has shown to improve sample quality and is nearly always used in model

construction of GANs [176].

6.3. Discussion 141

10 50 100 350 500
Top X classes

0

10

20

30

40

50

60

70

80

90

Im
p
ro

v
e
m

e
n
t

o
v
e
r

ra
n
d
o
m

 g
u
e
ss

in
g
 (

%
)

No defenses
Weight Norm.
Dropout

Figure 6.17: Improvement over random guessing for Weight Normalization and

Dropout defenses against white-box attacks on models trained over different number

of classes with LFW.

defenses (resp., 89% and 52%). However, we also find that Weight Normaliza-

tion often results in training instability (i.e., the discriminator outperforms the

generator, or vice-versa), while Dropout significantly slows down the training

process, requiring more epochs to get qualitatively plausible samples.

Using our attacks as defense. Also note that, our attacks can actually

be used as a defense mechanism. The difference in white-box and black-box

accuracy provides information about how well the local model approximates

the target model, thus, one could use this information to train a target model

which cannot be well approximated. Furthermore, similarly to early-stopping

criteria in model training, one can stop training when visual sample quality is

high but white-box attack accuracy is still low.

In our experiments, we also observe the benefits of a more regularized

model in increasing the robustness against information leakage in the case of

BEGAN. For instance, in white-box attacks on CIFAR-10, BEGAN produces

quality samples without overfitting, with membership inference performing

only 9% better than random guessing (see Figure 6.7(c)).

Differentially private GANs. Finally, we evaluate our attack against a

recently proposed technique for (ε,δ)-Differentially Private GANs [202], where

gaussian noise [70] is injected in the discriminator forward pass during train-

142 Chapter 6. Evaluating Privacy Leakage of Generative Models

Figure 6.18: Accuracy curve and samples for different privacy budgets on top ten

classes from the LFW dataset, showing a trade-off between samples quality and

privacy guarantees.

ing. Figure 6.18 shows the results of a white-box attack against Differentially

Private DCGAN trained on top ten classes for different values of the privacy

budget ε (with δ set to 10−4). For all experiments, the target model is trained

for 500 epochs and the final privacy budget is computed using moments ac-

countant [1]. The attack does no better than random guessing for ε= 1.5 (first

tick in the plot), while accuracy increases up to 85% for ε = 28.3. However,

note that acceptable levels of privacy (i.e., values of ε < 10) yield very bad

samples quality.

Chapter 7

Evaluating Privacy Leakage of

Collaborative Learning

In collaborative and federated learning, participants’ training data may

not be identically distributed. In fact, federated learning is explicitly designed

to take advantage of the fact that participants may have private training data

that is different from the publicly available data for the same class [143].

In this chapter, we focus on inferring information that is true specifically

about certain subsets of the data used to train collaborative learning models.

The basic privacy violation in this setting is membership inference. In Chap-

ter 6, we presented some novel results on inferring membership in generative

models, but collaborative learning presents interesting new avenues for such

inferences.

As discussed in Section 3.2.4, prior work [84, 96, 15] aimed to infer prop-

erties that characterize an entire class: for example, given a facial recognition

model where one of the classes is Bob, infer what Bob looks like. By contrast,

in this work, we aim to infer properties that are true of a specific subset of

the training inputs but not of the class as a whole. For instance, when Bob

The research presented in this chapter was joint work with a fellow PhD student Con-

gzheng Song. The author equally contributed to the design of the attacks presented in Sec-

tion 7.1, and lead the work on the experimental evaluation of the attacks on the CSI Corpus

and FourSquare datasets in Section 7.2, as well as the evaluation of potential defenses de-

scribed in Section 7.3.

144 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

uses his photos to collaboratively train a gender classifier, we infer that Alice

appears in some of the photos. We especially focus on the properties that are

independent of the class’ characteristic features. For example, in the gender

classifier example, we infer whether people in Bob’s photos wear glasses, even

though wearing glasses has no correlation with gender. There is no legitimate

reason for a model to leak this information; this is purely an artifact of the

collaborative learning process.

A participant’s contribution to each iteration of collaborative learning is

based on a batch of his training data. We infer single-batch properties, i.e., de-

tect that the data in a given batch has the property but other batches do not.

We also infer when a property appears in the training data. This has poten-

tially serious privacy implications. For instance, we can infer when a certain

person starts appearing in a participant’s photos or when the participant starts

visiting a certain type of doctors. Finally, we infer properties that characterize

a participant’s entire dataset (but not the entire class), e.g., authorship of the

texts used to train a sentiment analysis model.

7.1 Inference Attacks
This section describes our inference methodology.

7.1.1 Threat model

We assume that K participants (where K ≥ 2) jointly train a machine

learning model using one of the collaborative learning algorithms described

in Section 2.3.5. Note that, although we only experiment with joint models

trained with SGD, our inference methodology is not specific to SGD. One of

the participants is the adversary. His goal is to infer information about the

training data of another, target participant by analyzing periodic updates to

the joint model during training. Multi-party (K > 2) collaborative learning

also involves honest participants who are neither the adversary nor the target.

Depending on how collaborative learning is done, their updates or models may

be aggregated with those of the target.

7.1. Inference Attacks 145

Figure 7.1: Overview of inference attacks against collaborative learning.

In the multi-party case, the identities of the participants may not be

known to the adversary. If the identities are known but the models are ag-

gregated, the adversary may infer something about the training data but not

trace it to a specific participant. In general, tracing requires auxiliary infor-

mation specific to the leakage. For example, after inferring that photos of a

certain person have started appearing in the training data, the adversary may

have enough auxiliary and contextual information about the participants to

guess which of them has included these photos in the training data. This type

of leakage is outside the scope of our work, which focuses solely on the leakage

from the collaborative learning process itself.

7.1.2 Overview of the attacks
Figure 7.1 gives a high-level overview of our inference attacks. At each

iteration t of training, the adversary downloads the current joint model, calcu-

lates gradient updates as prescribed by the collaborative learning algorithm,

and sends his own updates to the server. The adversary saves the snapshot of

the joint model parameters θt. The difference between the consecutive snap-

shots ∆θt = θt− θt−1 = ∑
k∆θkt is equal to the aggregated updates from all

participants, hence ∆θt−∆θadv
t are the aggregated updates from all partici-

pants other than the adversary.

Leakage from the embedding layer. For machine learning tasks involving

text or location data, where the input space is discrete and sparse, the standard

approach is to apply an embedding layer that transforms sparse inputs into

a lower-dimensional vector representation. For convenience, we use word to

146 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

denote discrete tokens: words in the case of text data, specific locations in the

case of location data. Let vocabulary V be the set of all words. Each word

in the training data is mapped to a word-embedding vector via an embedding

matrix Wemb ∈ R|V |×d, where |V | is the size of the vocabulary and d is the

dimensionality of the embedding.

During training, the embedding matrix is treated as a parameter of the

model and optimized collaboratively. The gradient of the embedding layer is

sparse with respect to the input words: given a batch of text, the embedding

is updated only with the words that appear in the batch. The other words

get zero gradients. This difference directly reveals which words occur in the

training batches used by the honest participants during collaborative learning.

Leakage from the gradients. In deep learning models, the gradients are

computed using the back-propagation algorithm which propagates the loss

through the entire network from the last to the first layer. Gradients of a

given layer are computed using this layer’s features and the error from the layer

above. In the case of sequential fully connected layers hl,hl+1 (hl+1 =Wl ·hl,

where Wl is the weight matrix), the gradient of error E with respect to Wl is

computed as ∂E
∂Wl

= ∂E
∂hl+1

·hl. The gradients of Wl are inner products of the

error from the layer above and the features hl. Similarly, for a convolutional

layer, the gradients of the weights are convolutions of the error from the layer

above and the features hl.

Gradients are based on features, thus observations of the participants’

gradient updates can be used to infer the feature values, which are in turn

based on these participants’ private training data.

7.1.3 Membership inference
As explained above, the non-zero gradients of the embedding layer reveal

which words appear in a batch. The adversary can use this information to

infer membership of a given text or location, i.e., whether this record was part

of the training set or not.

Let Vt be the words included in the updates ∆θt. During training, the

7.1. Inference Attacks 147

Algorithm 7: Batch Property Classifier
Input: Attacker’s auxiliary data Xadv

prop,X
adv
nonprop

Output: Batch property classifier fprop

1 Gprop←∅ . Positive training data for property inference

2 Gnonprop←∅ . Negative training data for property inference

3 for i= 1 to T do

4 Receive θt from server

5 Run ClientUpdate(θt)

6 Sample Badv
prop ⊂Xadv

prop,B
adv
nonprop ⊂Xadv

nonprop

7 Calculate gprop =∇L(Badv
prop;θt),gnonprop =∇L(Badv

nonprop;θt)

8 Gprop←Gprop∪{gprop}

9 Gnonprop←Gnonprop∪{gnonprop}

10 Label Gprop as positive and Gnonprop as negative

11 Train a binary classifier fprop given Gprop,Gnonprop

attacker collects a vocabulary sequence [V1, . . . ,VT]. Given a text record r,

with words Vr, he can test if Vr ⊆ Vt, for some t in the vocabulary sequence. If

r is in target’s dataset, then Vr will be included in at least one vocabulary from

the sequence. The adversary can use this to decide whether r was a member

or not.

Finally, note that in case of a network initialized with pre-trained word

embeddings, and then jointly trained without updating the embedding layer

parameters, the adversary would not be able to observe any non-zero gradients

for the embedding layers.

7.1.4 Passive property inference

We assume that the adversary has auxiliary data consisting of the data

points that have the property of interest (Xadv
prop) and data points that do not

have the property (Xadv
nonprop). These data points need to be sampled from the

same class as the target participant’s data, but otherwise can be unrelated.

The intuition behind this attack is that the attacker can leverage the

148 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

snapshots of the global model to generate aggregated updates based on the

data with the property and updates based on the data without the property.

This produces labeled examples, which enable the adversary to train a binary

batch property classifier that determines if the observed gradient updates are

based on the data with or without the property.

Batch property classifier. Algorithm 7 shows how to build a batch property

classifier during collaborative training. Given a model snapshot θt, calculate

the gradients gprop based on a batch with the property Badv
prop ⊂ Xadv

prop and

gnonprop based on a batch without the property Badv
nonprop ⊂ Xadv

nonprop. Once

enough labeled gradients have been collected, train a binary classifier fprop.

For the property inference attacks that exploit the embedding-layer gra-

dients (e.g., the attack on the Yelp dataset in Section 7.2.3), we use a logistic

regression classifier.

For all other property inference attacks, we experimented with logistic re-

gression, gradient boosting, and random forests and found that random forests

(with 50 trees) performed the best. The input features in this case correspond

to the observed gradient updates. The number of the features is thus equal

to the model’s parameters, which can be very large for a realistic model. To

downsample the features representation, we apply the global max pooling op-

erator [86] on the observed gradient updates.

Property inference. As collaborative training progresses, the adversary ob-

serves gradient updates gobs = ∆θt−∆θadv
t . The basic attack is single-batch

inference: the adversary simply feeds the observed gradient updates to the

batch property classifier fprop.

This inference attack can be extended from the properties of a single

batch to the target’s entire training dataset. The batch property classifier

fprop outputs a score in [0,1], indicating the probability that a batch has the

property. The adversary can use the average score across all iterations to

decide whether the target’s entire dataset has the property in question.

This inference attack is passive. The adversary observes the gradient

7.1. Inference Attacks 149

Figure 7.2: Active property inference attack.

updates and performs inference without changing anything in the local or

global collaborative training procedure.

7.1.5 Active property inference

An active adversary can perform a more powerful property inference at-

tack by using multi-task learning.

The adversary extends his local copy of the main, collaboratively trained

model with an augmented property classifier connected to the last layer. This

local model is trained simultaneously to perform well on the main task and

to recognize batch properties. On the training data where each record has a

main label y and a property label p, the model’s joint loss is calculated as

Lmt = α ·L(x,y;θ) + (1−α) ·L(x,p;θ)

During collaborative training, the adversary uploads the updates ∇Lmt

based on this joint loss. These updates optimize the main model and simul-

taneously learn separable representations for the data with and without the

property. As a result, the gradients will be separable, too (e.g., see Figure 7.6

in Section 7.2.5), enabling the adversary to tell if the training data has the

property. Figure 7.2 shows an example of active property inference attack

with gender classification as the main task and author identification as the

inference task.

150 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

This adversary is still “honest-but-curious” in the cryptographic parlance.

He faithfully follows the collaborative learning protocol and does not submit

any malformed messages. The only difference with the passive attack is that

this adversary performs additional local computations and submits the result-

ing values into the collaborative learning protocol. Note that the “honest-

but-curious” model does not constrain the parties’ input values, only their

messages.

7.2 Experiments
Our experiments encompass a few different machine learning tasks and

few datasets, which we review next.

7.2.1 Datasets and model architectures

We now describe the datasets, collaborative learning tasks, and adversar-

ial inference tasks used in our experiments—see the summary in Table 7.1.

Our choices of hyper-parameters are based on the standard models from the

machine learning literature.

Labeled Faces In the Wild (LFW). LFW [102] contains 13,233 62x47 RGB

face images for 5,749 individuals with different facial-attribute labels such as

gender, race, age, hair color, and eyewear.

FaceScrub. This dataset [159] contains 76,541 50x50 RGB images for 530

individuals with the gender label: 52.5% are labeled as male, the rest as female.

For our experiments, we select a subset of 100 individuals with the most images,

for a total of 18,809 images.

On both LFW and FaceScrub, the collaborative models are convolutional

neural networks (CNN) with three spatial convolution layers with 32, 64, and

128 filters, kernel size set to (3,3), and max pooling layers with pooling size set

to 2, followed by two fully connected layers of size 256 and 2. We use rectified

linear unit (ReLU) as the activation function for all layers. Batch size is 32

(except in the experiments where we vary it), SGD learning rate is 0.01.

7.2. Experiments 151

Dataset #Records Main Tasks Inferences

LFW 13.2k Gender/Smile/Age Race/Eyewear

Eyewear/Race/Hair

FaceScrub 18.8k Gender Identity

PIPA 18.0k Age Gender

CSI 1.4k Sentiment Membership,

Region/Gender/Veracity

FourSquare 15.5k Gender Membership

Yelp-health 17.9k Review score Membership,

Doctor specialty

Yelp-author 16.2K Review score Author

Table 7.1: Datasets and tasks used in our experiments.

People in Photo Album (PIPA). PIPA [226] contains over 60,000 photos

of 2,000 individuals collected from public Flickr photo albums. Each image

includes one or more people and is labeled with attributes such as the number

of people and their gender, age, and race. For our experiments, we select a

subset of 18,000 images with three or fewer people and scaled the raw images

to 128x128.

The collaborative model for PIPA is a VGG-style [191] 10-layer CNN with

five convolution blocks. The first two consist of one convolutional layer and

max pooling, the next three of two convolutional layers and max pooling. After

the block, there are two fully connected layers. Batch size is 32, SGD learning

rate is 0.01.

Yelp-health. We extract health care-related reviews from the Yelp dataset1

of 5 million reviews of businesses listed on Yelp, tagged with numeric ratings

(1-5) and attributes such as business type and location. Our subset contains

17,938 reviews for 10 types of medical specialists (see the leftmost column of

1https://www.yelp.com/dataset

https://www.yelp.com/dataset

152 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

Table 7.4).

Yelp-author. We also extract a subset of the Yelp dataset with the reviews

of the top 10 most prolific reviewers, 16,207 in total.

On both Yelp datasets, the model is a recurrent neural network with a

word-embedding layer of dimension 100. Words in a review are mapped to a

sequence of word-embedding vectors, which is fed to a gated recurrent unit

(GRU [54]) layer that maps it to a sequence of hidden vectors. We add a fully

connected classification layer to the last hidden vector of the sequence. SGD

learning rate is 0.05.

FourSquare. In [217, 218], Yang et al. collect a global dataset of FourSquare

location “check-ins” (userID,time,location,activity) from April 2012 to Septem-

ber 2013. For our experiments, we select a subset of 15,548 users who checked

in at least 10 different locations in New York City and for whom we know their

gender [219]. This yields 528,878 check-ins. The model is a gender classifier,

a task previously studied by Pang et al. [165] on similar datasets.

CLiPS Stylometry Investigation (CSI) Corpus. This annually expanded

dataset [208] contains student-written essays and reviews. The 1,412 reviews

are equally split between Truthful/Deceptive or Positive/Negative and labeled

with the attributes of the author (gender, age, sexual orientation, region of ori-

gin, personality profile) and the document (timestamp, genre, topic, veracity,

sentiment). 80% of the reviews are written by females, 66% by authors from

Antwerpen and the rest from other parts of Belgium and the Netherlands.

On the FourSquare and CSI datasets, the model, which is based on [114],

first uses an embedding layer to turn non-negative integers (locations indices

and word tokens) into dense vectors of dimension 320, then applies three spatial

convolutional layers with 100 filters and variable kernel windows of size (3,320),

(4,320) and (5,320) and max pooling layers with pooling size set to (l−3,1),

(l−4,1), and (l−5,1) where l is the fixed length to which input sequences are

padded. The hyper-parameter l is 300 on CSI and 100 on FourSquare. After

this, the model has two fully connected layers of size 128 and 2 for FourSquare

7.2. Experiments 153

Yelp-health FourSquare

Batch Size Precision Batch Size Precision

32 0.92 100 0.99

64 0.84 200 0.98

128 0.75 500 0.91

256 0.66 1,000 0.76

512 0.62 2,000 0.62

Table 7.2: Precision of membership inference (recall is 1).

and one fully connected layer of size 2 for CSI. We use RELU as the activation

function. Batch size is 100 for FourSquare, 12 for CSI. SGD learning rate is

0.01.

Experimental setup. Our experiments have been performed on a work-

station running Ubuntu Server 16.04 LTS equipped with a 3.4GHz CPU i7-

6800K, 32GB RAM, and an NVIDIA TitanX GPU card. We use MxNet [50]

and Lasagne [64] to implement deep neural networks and Scikit-learn [169] for

conventional machine learning models. Training our inference models takes

less than 60 seconds on average and does not require a GPU.

Metrics. We use AUC scores to evaluate the performance of the collaborative

model and of our property inference. For membership inference, we report only

precision because our decision rule from Section 7.1.3 is binary and does not

produce a probability score.

7.2.2 Two-party membership inference

The adversary first builds a Bag of Words (BoW) representation for the

input whose membership in the target’s training data he aims to infer. We

denote this as the test BoW. During training, as explained in Section 7.1.3, the

non-zero gradients of the embedding layer reveal which “words” are present

in each batch of the target’s data, enabling the adversary to build a BoW. If

the test BoW is a subset of the batch BoW, the adversary concludes that the

154 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

input in question is included in this batch.

To demonstrate membership inference, we choose Yelp-health and

FourSquare datasets and set the vocabulary to the 5,000 most frequent words

and 30,000 most popular locations, respectively. We split the data evenly be-

tween the target and the adversary and train a collaborative model for 3,000

iterations.

Table 7.2 shows the precision of membership inference for different batch

sizes. As batch sizes increase, the adversary observes more words in each batch

BoW and the attack produces more false positives. Recall is always perfect,

i.e., there are no false negatives, because any true test BoW must be contained

in at least one of the batch BoWs observed by the adversary.

7.2.3 Two-party single-batch property inference
Next, we infer properties of the target participant’s training batches. We

call a batch Bnonprop if none of the inputs in it have the property, Bprop other-

wise. The adversary’s goal is to identify, by observing gradient updates, which

of the batches are Bprop.

We split the training data evenly between the target and the adversary and

assume that same fraction in both subsets has the property. During training,
1
m of the target’s batches include only inputs with the property (m= 2 in the

following experiments).

LFW. Table 7.3 reports the results of single-batch property inference on the

LFW dataset. For the inference tasks, we choose properties that are uncorre-

lated with the main classification label that the collaborative model is trying

to learn. The attack has perfect AUC when the main task is gender classifica-

tion and the inference task is “race:black” (these labels are independent; their

Pearson correlation is -0.005). The attack also achieves almost perfect AUC

when the main task is “race: black” and the inference task is “eyewear: sun-

glasses”. It also performs well on several other properties, including “eyewear:

glasses” when the main task is “race: Asian”.

These results demonstrate that gradients observed during training leak

7.2. Experiments 155

Main T. Infer T. Corr. AUC Main T. Infer T. Corr. AUC

Gender Black -0.005 1.0 Gender Sunglasses -0.025 1.0

Gender Asian -0.018 0.93 Gender Eyeglasses 0.157 0.94

Smile Black 0.062 1.0 Smile Sunglasses -0.016 1.0

Smile Asian 0.047 0.93 Smile Eyeglasses -0.083 0.97

Age Black -0.084 1.0 Race Sunglasses 0.026 1.0

Age Asian -0.078 0.97 Race Eyeglasses -0.116 0.96

Eyewear Black 0.034 1.0 Hair Sunglasses -0.013 1.0

Eyewear Asian -0.119 0.91 Hair Eyeglasses 0.139 0.96

Table 7.3: AUC score of single-batch property inference on LFW. We also report

the Pearson correlation between the main task label and the property label.

more than the characteristic features of each class. In fact, collaborative

learning leaks properties of the training data that are uncorrelated with class

membership. To understand why, we plot the t-SNE projection [136] of the

features from different layers of the joint model in Figure 7.3. Observe that the

feature vectors are grouped by property in the lower layers pool1, pool2 and

pool3, and by class label in the higher layer. Intuitively, this shows that the

model does not just learn to separate inputs by class. The lower layers of the

model learn to separate inputs by various properties that are irrelevant for the

model’s designated task. Our inference attack exploits this unintended extra

functionality, which also shows the effective model capacity of neural networks

to memorize the dataset [223].

Yelp-health. On this dataset, we use review score classification (specifically,

sentiment analysis) as the main task and the specialty of the doctor being

reviewed as the property inference task. Obviously, the latter is more sensitive

from the privacy perspective.

We use 3,000 most frequent words in the corpus as the vocabulary and

train the model for 3,000 iterations. Using BoWs from the embedding-layer

gradients, the attack achieves almost perfect AUC for inferring the doctor

156 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

(a) pool1 (b) pool2

(c) pool3 (d) fc

Figure 7.3: t-SNE projection of the features from different layers of the joint model

on LFW gender classification; 0 is female, 1 is male. The property (i.e., the blue

points denoted by p-0 and p-1) is “race: black”, while the red points without the

property are denoted by np-0 and np-1

specialty. Table 7.4 shows the words that have the highest predictive power in

our logistic regression.

Fractional properties. We also investigate if it is possible to infer the prop-

erty when only some of the inputs in a batch have it. For these experiments,

we use FaceScrub’s top 5 face IDs and Yelp-author (the latter with the 3,000

most frequent words as the vocabulary). The model is trained for 3,000 itera-

tions. As before, 1/m of the target’s batches include inputs with the property

(m= 2 in the experiments), but here we vary the fraction of the inputs in the

batch that have the property among 0.1, 0.3, 0.5, 0.7, and 0.9.

Figure 7.4 reports the results. On FaceScrub for IDs 0, 1, and 3, AUC

7.2. Experiments 157

Health Service Top Words in Positive Class

Obstetricians pregnancy, delivery, women, birth, ultrasound

Pediatricians pediatrics, sick, parents, kid, newborn

Cosmetic Surgeons augmentation, plastic, breast, facial, implants

Cardiologists cardiologist, monitor, bed, heart, ER

Dermatologists acne, dermatologists, mole, cancer, spots

Ophthalmologists vision, LASIK, contacts, lenses, frames

Orthopedists knee, orthopedic, shoulder, injury, therapy

Radiologists imaging, SimonMed, mammogram, CT, MRI

Psychiatrists psychiatrist, mental, Zedek, depression, sessions

Urologists Edgepark, pump, supplies, urologist, kidney

Table 7.4: Words with the largest positive coefficients in the property classifier for

Yelp-health.

scores are above 0.8 even if only 50% of the batch contain that face. This

means that the adversary can successfully infer that photos of a particular

person appear in a batch even though (a) the model is trained for generic

gender classification, and (b) half of the photos in the batch are of other

people. If the fraction is higher, AUC scores approach 1.

On Yelp-author, AUC scores are above 0.95 for all identities even when

the fraction is 0.3. This means that we can successfully identify the authors

of reviews even though (a) the model is trained for generic sentiment analysis,

and (b) more than 2/3rd of the reviews in the batch are from other authors.

Both results concretely illustrate that collaborative learning leaks much

more than the characteristic features of each class.

7.2.4 Inferring when a property occurs

Continuous training, when new training data is added to the process as

it becomes available, presents interesting opportunities for inference attacks.

If the occurrences of a property in the training data can be linked to events

158 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

(a) FaceScrub (b) Yelp-author

Figure 7.4: AUC vs. the fraction of the batch that has the property on FaceScrub

and Yelp-author.

(a) PIPA (b) FaceScrub

Figure 7.5: Detecting occurrence of a single-batch property.

outside the training process, privacy leakage is exacerbated. For example, if the

adversary can infer that a certain third person started appearing in another

participant’s training data immediately after that participant uploaded his

photos from a trip, this may constitute a serious privacy breach.

PIPA. Images in the PIPA dataset have between 1 to 3 faces. We train

the collaborative model to detect if there is a young adult in the image; the

adversary’s inference task is to determine if the people in the image are of

the same gender. The latter property is a stepping stone to inferring social

relationships, and thus is sensitive. We train the model for 2,500 iterations

and let the batches with the “same gender” property appear in iterations 500

to 1500.

Figure 7.5(a) shows, for each iteration, the probability output by the

adversary’s classifier that the batch in that iteration has the property. The

7.2. Experiments 159

appearance and disappearance of the property in the training data are clearly

visible in the plot.

FaceScrub. For the gender classification model on FaceScrub, the adver-

sary’s objective is to infer whether and when a certain person appears in a

participant’s photos.

The joint model is trained for 2,500 iterations. We arrange the target’s

training data so that two specific identities appear during certain iterations:

ID 0 in iterations 0 to 500 and 1500 to 2000, ID 1 in iterations 500 to 1000

and 2000 to 2500. In the other iterations, the batches are mixtures of other

identities. The adversary trains three property classifiers, for ID 0, ID 1, and

a third ID that does not appear in the target’s dataset (ID 2).

Figure 7.5(b) reports the scores of all three classifiers. ID 0 and 1 receive

the highest scores in the iterations where they appear, whereas ID 2, which

never appears in the training data, receives very low scores in all iterations.

These experiments show that our attacks can successfully infer dynamic

properties of the training dataset as collaborative learning progresses.

7.2.5 Active property inference
To show the additional power of the active attack from Section 7.1.5, we

use FaceScrub. The main task is gender classification, the adversary’s task is

to infer the presence of ID 4 in the training data. We assume that this ID

occurs in a single batch, where it constitutes 50% of the photos. We evaluate

the attack with different choices of α, which controls the balance between the

main-task loss and the property-classification loss in the adversary’s objective

function.

Figure 7.6(a) shows that AUC increases as we increase α. Figure 7.6(b)

and Figure 7.6(c) show the t-SNE projection of the final fully connected layer,

with α= 0 and α= 0.7, respectively. Observe that the data with the property

(blue points) is grouped tighter when α= 0.7 than in the model trained under a

passive attack (α= 0). This illustrates that as a result of the active attack, the

joint model learns a better separation for data with and without the property.

160 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

(a) ROC for different α (b) t-SNE of the final layer for α= 0

(c) t-SNE of the final layer for α= 0.7

Figure 7.6: Active property inference attack on FaceScrub.

7.2.6 Multi-party with synchronized SGD

As the number of honest participants in collaborative learning (cf. Algo-

rithm 1) increases, the adversary’s task becomes harder because the observed

gradient updates are aggregated across multiple participants. Furthermore,

the inferred information may not directly reveal the identity of the participant

to whom the data belongs, although auxiliary information can help in this case

(see Section 7.1.1).

We evaluate our attacks on LFW and Yelp-author datasets. We split

the training data evenly across all participants, but in such a way that only

the target and the adversary have the data with the property. The joint

model is trained with the same hyper-parameters as in the two-party case.

Similar to the two-party setting (see Section 7.2.3), the adversary’s goal is to

identify which aggregated gradient updates are based on batches Bprop with

the property.

7.2. Experiments 161

(a) LFW (b) Yelp-author

Figure 7.7: Multi-party with synchronized SGD: attack AUC score vs. the number

of participants.

LFW. We experiment with (1) gender classification as the main task and

“race: black” as the inference task, and (2) smile classification as the main

task and “eyewear: sunglasses” as the inference task.

Figure 7.7(a) shows that the attack still achieves reasonably high perfor-

mance, with AUC score around 0.8, when the number of participants is 12.

Performance then degrades for both tasks.

Yelp-author. The inference task is again author identification. In the multi-

party case, the gradients of the embedding layer leak the batch BoWs of all

honest participants, not just the target.

Figure 7.7(b) reports the results. For some authors, the AUC scores do

not degrade significantly even with many participants. This is likely due to

some unique combinations of words used by these authors, which identify them

even in multi-party settings.

7.2.7 Multi-party with model averaging

In every round t of multi-party federated learning with model averaging,

the adversary observes θt− θt−1 = ∑
k
nk

n θ
k
t −

∑
k
nk

n θ
k
t−1 = ∑

k
nk

n (θkt − θkt−1),

where θkt − θkt−1 are the aggregated gradients computed on the k-th partici-

pant’s local dataset. To simplify our experiments and because we do not care

about the computational efficiency of the learning protocol for the purposes of

162 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

(a) Face ID 1, K = 3 (b) Face ID 1, K = 5

(c) Face ID 3, K = 3 (d) Face ID 3, K = 5

Figure 7.8: Multi-party collaborative training with model averaging: box plots

show the distribution of the adversary’s scores in each trial. In the 8 trials on the

left, one of the participants’ data has the property; in the 8 trials on the right, none

of the honest participants have the data with the property.

our analysis, we set C = 1, i.e., the server takes updates from all clients in all

rounds (see Algorithm 2 in Section 2.3.5).

In our experiments, we split the training data evenly among honest par-

ticipants but ensure that in the target participant’s subset, p̂% of the inputs

have the property while none of the other honest participants’ data has the

property. During each epoch of local training, every honest participant splits

his local training data into 10 batches and performs one round of training.

We assume that the adversary has the same number of inputs with the

property as the target. As before, when the adversary trains his binary clas-

sifier, he needs to locally “emulate” the collaborative training process, i.e.,

sample data from his local dataset, compute aggregated updates, and learn

to distinguish between the aggregates based on the data without the property

7.2. Experiments 163

and aggregates where one of the underlying updates was based on the data

with the property.

We perform this experiment for 8 trials. For the control experiments, we

set p̂= 0% and also perform them 8 times. We want to see if it is possible to

distinguish the trials where there is a subset in the training data that has the

property from the control trials where there are no training inputs with the

property.

Detecting presence of a face in the training data. We use FaceScrub

and select two face IDs (1 and 3) whose presence we want to infer. In the

“property” case, p̂ = 80%, i.e., 80% of one honest participant’s training data

consist of the photos that depict the person in question. In the “control” case,

p̂ = 0%, i.e., the person does not occur in the training data of any honest

participants.

Figure 7.8 shows the scores assigned by the adversary’s classifier to the

aggregated updates with 3 and 5 total participants. When the face of interest

is present in the training dataset, the scores are much higher than when it is

absent.

Inference is a probabilistic process and there are no guarantees. Success

of the attack depends on the property being inferred, distribution of the data

across participants, and other factors. For example, the classifiers for Face IDs

2 and 4, which were trained in the same fashion as the classifiers for Face IDs

1 and 3, failed to infer the presence of “their” faces in the training data.

Inferring when a property occurs. In this experiment, we aim to infer

when a participant whose local data has a certain property joined collaborative

training. We first let the adversary and the rest of the honest participants train

the joint model for 250 rounds. The target participant then joins the training

at round t= 250 with the local data that consists of photos depicting ID 1.

Figure 7.9 shows the results. The adversary’s AUC scores are around 0

when images with face ID 1 are not present and then increase almost to 1.0

right after the target participant joins the training.

164 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

Figure 7.9: Detecting when a participant whose local data has the property of

interest joins the training. K = 2 for rounds 0 to 250, K = 3 for rounds 250 to 500.

Figure 7.10: Uniqueness of user profiles with respect to the number of top loca-

tions.

7.3 Defenses
We now discuss and evaluate possible defenses.

7.3.1 Selective gradient sharing

As suggested in [190], participants in collaborative learning could share

only a fraction of their gradients during each update. This reduces communi-

cation overhead and, potentially, leakage, since the adversary observes fewer

gradients.

To evaluate this defense, we measure the performance of single-batch in-

ference against a sentiment classifier collaboratively trained on the CSI Corpus

by two parties who exchange only a fraction of their gradients. Table 7.5 shows

7.3. Defenses 165

Property / % parameters update 10% 50% 100%

Top region (Antwerpen) 0.84 0.86 0.93

Gender 0.90 0.91 0.93

Veracity 0.94 0.99 0.99

Table 7.5: Inference attacks against the CSI Corpus for different fractions of gra-

dients shared during training.

the resulting AUC scores. When inferring the region of the texts’ authors, our

attack still achieves 0.84 AUC when only 10% of the updates are shared during

each iteration, compared to 0.93 AUC when all updates are shared.

7.3.2 Dimensionality reduction

As discussed in Section 7.1.2, if the input space of the model is very

sparse and the inputs must be embedded into a lower-dimensional space, non-

zero gradient updates in the embedding layer reveal which input tokens are

present in the training batch.

One plausible defense is to only use inputs that occur many times in the

training data. This does not work in general: for example, Figure 7.10 shows

that restricting inputs to the top locations in the FourSquare dataset eliminates

most of the training data.

A smarter defense is to restrict the model so that it only uses “words” from

a pre-defined vocabulary of common words. For example, Google’s federated

learning for predictive keyboards uses a fixed vocabulary of 5,000 words [143].

In Table 7.6, we report the accuracy of our membership inference at-

tack and of the joint model on its main task—gender classification for the

FourSquare dataset, sentiment analysis for the CSI Corpus—for different sizes

of the common vocabulary (locations in the case of FourSquare, words in the

case of CSI). Overall, this approach partially mitigates our attacks but also

has a significant negative impact on the quality of the collaboratively trained

models.

166 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

CSI FourSquare

Top N Attack Model Top N Attack Model

words Precision AUC locations Precision AUC

4,000 0.94 0.91 30,000 0.91 0.64

2,000 0.92 0.87 10,000 0.86 0.59

1,000 0.92 0.85 3,000 0.65 0.51

500 0.82 0.84 1,000 0.52 0.50

Table 7.6: Membership inference against the CSI Corpus and FourSquare for dif-

ferent vocabulary sizes.

7.3.3 Dropout

Another possible defense is to employ dropout [194], a popular technique

often used as a regularizer to mitigate overfitting in neural networks. Dropout

randomly deactivates activations between neurons, with probability pdrop ∈

[0,1]. Random deactivations may weaken our attacks because the adversary

observes fewer gradients corresponding to the active neurons.

To evaluate this approach, we add dropout after the max pool layers

in the joint model. Table 7.7 reports the accuracy of inferring the region

of the reviews in the CSI Corpus, for different values of pdrop. Increasing

the randomness of dropout actually makes our attacks stronger while slightly

decreasing the accuracy of the joint model. We believe this is due to the

increased variance between participants’ updates, which yields more robust

features for the adversary’s inference model.

7.3.4 Participant-level differential privacy

Record-level ε-differential privacy, by definition, bounds the success of

membership inference but does not prevent property inference. Any applica-

tion of differential privacy entails application-specific tradeoffs between privacy

of the training data and accuracy of the resulting model. The participants must

also somehow choose the parameters (e.g., ε) that control this tradeoff.

7.3. Defenses 167

Dropout Prob. Attack AUC Model AUC

0.1 0.94 0.87

0.3 0.97 0.87

0.5 0.98 0.87

0.7 0.99 0.86

0.9 0.99 0.84

Table 7.7: Inference of the top region (Antwerpen) on the CSI Corpus for different

values of dropout probability.

In theory, participant-level differential privacy bounds the success of all

inference attacks described in this work. We implemented the participant-level

differentially private federated learning algorithm by McMahan et al. [144] and

attempted to train a gender classifier on LFW. However, the model did not

converge for any number of participants (we tried at most 30). This is due to

the magnitude of noise needed to achieve differential privacy with the moments

accountant bound [1], which is inversely proportional to the number of users

(the model in [144] was trained on thousands of users). Another participant-

level differential privacy mechanism, presented in [85], also requires a very

large number of participants.

Therefore, it remains an open research question whether or not it is pos-

sible to (1) prevent our inference attacks and (2) obtain high-quality models

by training with participant-level differential privacy and relatively few (e.g.,

dozens) participants.

7.3.5 Sensitivity to number of training epochs

Finally, we measure the sensitivity of our attacks to the number of training

epochs. Figure 7.11 reports the accuracy of inferring the author’s gender in

the CSI Corpus vs. the number of full training epochs (in a two-party setting).

We find that our attack is very effective, reaching 0.98 AUC after only

2 epochs and improving as the training progresses and the adversary collects

168 Chapter 7. Evaluating Privacy Leakage of Collaborative Learning

Figure 7.11: Attack performance with respect to the number of collaborative

learning epochs.

more gradient updates, while the performance of the main model is not af-

fected.

Chapter 8

Conclusion

Large-scale data collection efforts open the door to possible privacy

breaches, while fears of privacy harm often prevent the development of useful

machine learning applications. To address the tension between the utility of

extracting knowledge from data and the duty to protect individuals’ sensitive

information, this dissertation presented several results in the design, develop-

ment, and evaluation of privacy-aware data processing systems.

First, we introduced efficient techniques for privately and efficiently col-

lecting statistics (Chapter 4). By relying on private data aggregation protocols

and succinct data structures, we showed how to reduce the communication and

computation complexity incurred by each data source from linear to logarith-

mic in the size of the input, while only introducing a limited, upper-bounded

error in the quality of the statistics. Our techniques support different trust,

robustness, and deployment models and can be applied to a number of inter-

esting real-world problems where aggregate statistics are used to train machine

learning models.

Then, we presented a novel differentially private generative model, relying

on a mixture of k generative neural networks (Chapter 5). The training data is

first partitioned into k parts using a differentially private kernel k-means, then

each cluster is given to a separate generative neural network, such as RBM

or VAE, which are trained only on their own cluster using differentially pri-

vate gradient descent. The trained models can be used to generate and share

170 Chapter 8. Conclusion

synthetic high-dimensional data with provable privacy. We have evaluated the

performance of the model on real-world datasets, showing that our approach

provides accurate representation of large datasets with strong privacy guaran-

tees and high utility.

Next, we proposed a first-of-its-kind evaluation of information leakage in

generative models, showing that a variety of models are vulnerable to member-

ship inference attacks, i.e., the presence of exact data points in training data

(Chapter 6). We showed that our attacks can be used to detect overfitting

in generative models and help selecting an appropriate model that will not

leak information about samples on which it was trained. Moreover, we demon-

strated that we can infer membership using a novel method for training GANs,

and that an attacker with limited auxiliary knowledge of dataset samples can

remarkably improve their accuracy.

Finally, we proposed and evaluated several inference attacks against col-

laborative deep learning (Chapter 7). These attacks enable a malicious par-

ticipant to not only infer membership, but also properties that characterize

subsets of the training data and are independent of the properties that the

joint model aims to capture. We found that the root cause of these attacks

is that when a deep learning model is trained, it internally learns to recog-

nize many more features of the data than is necessary for the task that it is

being trained for. Consequently, model updates during collaborative learning

leak information about these extra, “unintended” features to adversarial par-

ticipants. Active attacks are potentially very powerful in this setting because

they enable the adversary to trick the joint model into learning features of the

adversary’s choosing without a significant impact on the model’s performance

on its main task.

Progress in machine learning has been enabled by the ability of analyzing

massive amounts of data and refining model parameters to better encode the

patterns within that data. On the one hand, machine learning models should

learn general patterns of the training data in order to be able to generalize

171

with new unseen data. On the other hand, properties of single training data-

points or subsets of data-points belonging to specific individuals should not be

memorized and then revealed to avoid violating users’ privacy. Unfortunately,

prior work [189], as well as novel contributions presented in this dissertation,

show that machine learning models lead to information leakage about users’

training data. However, strong connections between privacy breaches and

overfitting lead to the conclusion that privacy mechanisms such as differential

privacy can work together with training regularization techniques to achieve

common objectives between the fields of Privacy Enhancing Technologies and

Machine Learning.

We conclude this dissertation by highlighting some open problems and

items for future work.

Privately training machine learning models. In Chapter 4, we showed

how to privately and efficiently collect data from large streams, and then use

the aggregate to extract useful estimates of statistics and train simple machine

learning models. One interesting research direction is to investigate scenarios in

which different succinct data structures could lead to better accuracy-efficiency

tradeoffs, thus allowing the training of more sophisticated statistical models,

e.g., learning word embeddings [150].

In Chapter 5, we introduced a two-step training process for clustering

generative neural network models. However, clustering algorithms are often

dependent on the type of the input data, thus limiting the performance of our

proposal to different domains. Therefore, the design of general frameworks that

jointly optimize the generative network model and clustering assignments [10],

albeit with strong privacy guarantees, remains a challenging topic for further

research. Also, the effective privacy-preserving training of more advanced deep

neural networks is also desirable in order to generate more complex data such

as high-resolution photos [112].

Finally, it would be interesting to deploy our techniques in the wild,

with the release of open-source frameworks supporting large-scale privacy-

172 Chapter 8. Conclusion

preserving aggregation and generative machine learning as a service.

Privacy leakage in machine learning. Results presented in Chapters 6

and 7 suggest that inference attacks are a realistic threat in both generative

neural network models and collaborative learning. Nonetheless, we identify

some limitations that motivate the need for further research. For instance, our

attacks against generative models assume the attacker knows the size of the

training set, which limits their application to only specific scenarios. Relaxing

this assumption remains an interesting topic to be explored, along with evalu-

ating inference attacks on (differentially private) generative models which are

not based on GANs. Moreover, our membership inference attacks against col-

laborative learning can only be applied to embedding layers, thus motivating

the need for evaluating different layers in neural networks.

We also showed that defenses such as selective gradient sharing, reducing

dimensionality, and dropout are not always effective. This should motivate

future work on better defenses. For instance, techniques that learn only the

features relevant to a given task [76, 163] can potentially serve as the basis

for “least-privilege” collaboratively trained models. Further, methods could be

developed to spot active attacks that manipulate the model into learning extra

features. Finally, it remains an open question if participant-level differential

privacy mechanisms can produce accurate models when collaborative learning

involves relatively few participants.

Bibliography

[1] Martín Abadi et al. “Deep learning with differential privacy”. In: ACM

CCS. 2016.

[2] John M Abowd et al. “How protective are synthetic data?” In: PSD.

2008.

[3] Gergely Acs et al. “Privacy-Preserving Data Release with Generative

Neural Networks”. In: IEEE ICDM. 2017.

[4] Gergely Ács et al. “I have a dream!(differentially private smart meter-

ing)”. In: ACM IH. 2011.

[5] Gediminas Adomavicius et al. “Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible exten-

sions”. In: IEEE TKDE (2005).

[6] Charu C Aggarwal. “On k-anonymity and the curse of dimensionality”.

In: VLDB. 2005.

[7] Istemi Ekin Akkus et al. “Non-tracking Web Analytics”. In: ACM CCS.

2012.

[8] Mohammad Alaggan et al. “BLIP: non-interactive differentially-private

similarity computation on bloom filters”. In: SSS. 2012.

[9] Mohammad Alaggan et al. “Privacy-preserving Wi-Fi Analytics”. In:

PETS (2018).

[10] Elie Aljalbout et al. “Clustering with Deep Learning: Taxonomy and

New Methods”. In: arXiv preprint 1801.07648 (2018).

174 BIBLIOGRAPHY

[11] Yoshinori Aono et al. “Privacy-preserving deep learning: Revisited and

Enhanced”. In: ATIS. 2017.

[12] Martin Arjovsky et al. “Wasserstein gan”. In: arXiv preprint 1701.07875

(2017).

[13] Hassan Jameel Asghar et al. “SplitBox: Toward Efficient Private Net-

work Function Virtualization”. In: ACM HotMiddlebox. 2016.

[14] Vikas G Ashok et al. “A Scalable and Efficient Privacy Preserving

Global Itemset Support Approximation Using Bloom Filters”. In: DB-

SEC. 2014.

[15] Giuseppe Ateniese et al. “Hacking smart machines with smarter ones:

How to extract meaningful data from machine learning classifiers”. In:

IJSN (2015).

[16] Haim Avron et al. “Random Fourier features for kernel ridge regression:

Approximation bounds and statistical guarantees”. In: arXiv preprint

1804.09893 (2018).

[17] Michael Backes et al. “Membership Privacy in MicroRNA-based Stud-

ies”. In: ACM CCS. 2016.

[18] Raef Bassily et al. “Local, Private, Efficient Protocols for Succinct His-

tograms”. In: STOC. 2015.

[19] Raef Bassily et al. “Private empirical risk minimization: Efficient algo-

rithms and tight error bounds”. In: FOCS. 2014.

[20] BBC. Google DeepMind NHS app test broke UK privacy law. http:

//www.bbc.com/news/technology-40483202. 2017.

[21] Brett K Beaulieu-Jones et al. “Privacy-preserving generative deep neu-

ral networks support clinical data sharing”. In: bioRxiv (2017).

[22] Josh Benaloh. “Dense probabilistic encryption”. In: SAC. 1994.

[23] Yoshua Bengio et al. “Generalized denoising auto-encoders as generative

models”. In: NIPS. 2013.

http://www.bbc.com/news/technology-40483202
http://www.bbc.com/news/technology-40483202

BIBLIOGRAPHY 175

[24] Daniel J Bernstein et al. “High-speed High-Security Signatures”. In:

CHES. 2011.

[25] David Berthelot et al. “BEGAN: Boundary Equilibrium Generative Ad-

versarial Networks”. In: arXiv preprint 1703.10717 (2017).

[26] Giuseppe Bianchi et al. “”Better Than Nothing” Privacy with Bloom

Filters: To What Extent?” In: PSD. 2012.

[27] Vincent Bindschaedler et al. “Plausible Deniability for Privacy-

Preserving Data Synthesis”. In: VLDB (2017).

[28] Burton H Bloom. “Space/time trade-offs in hash coding with allowable

errors”. In: Communications of the ACM 13.7 (1970).

[29] Avrim Blum et al. “Practical privacy: the SuLQ framework”. In: PODS.

2005.

[30] Keith Bonawitz et al. “Practical Secure Aggregation for Privacy-

Preserving Machine Learning”. In: ACM CCS. 2017.

[31] Joppe W Bos et al. “Private predictive analysis on encrypted medical

data”. In: Journal of Biomedical Informatics (2014).

[32] Raphael Bost et al. Machine learning classification over encrypted data.

Tech. rep. Cryptology ePrint Archive Report 2014/331, 2014.

[33] Claire McKay Bowen et al. “Comparative Study of Differentially Private

Data Synthesis Methods”. In: arXiv preprint 1602.01063 (2016).

[34] Justin Brickell et al. “The cost of privacy: destruction of data-mining

utility in anonymized data publishing”. In: KDD. 2008.

[35] Martin Burkhart et al. “SEPIA: Privacy-preserving aggregation of

multi-domain network events and statistics”. In: Usenix Security. 2010.

[36] Joseph A Calandrino et al. ““You Might Also Like:” Privacy Risks of

Collaborative Filtering”. In: IEEE S&P. 2011.

176 BIBLIOGRAPHY

[37] Nicholas Carlini et al. “The Secret Sharer: Measuring Unintended Neu-

ral Network Memorization & Extracting Secrets”. In: arXiv preprint

1802.08232 (2018).

[38] David E Carlson et al. “Stochastic Spectral Descent for Restricted

Boltzmann Machines.” In: AISTATS. 2015.

[39] Claude Castelluccia et al. “Efficient Aggregation of encrypted data in

Wireless Sensor Networks”. In: Mobiquitous. 2005.

[40] Pablo Samuel Castro et al. “Urban traffic modelling and prediction

using large scale taxi GPS traces”. In: IEEE PerCom. 2012.

[41] T-H Hubert Chan et al. “Differentially private continual monitoring of

heavy hitters from distributed streams”. In: PETS. 2012.

[42] T-H Hubert Chan et al. “Privacy-preserving stream aggregation with

fault tolerance”. In: FC. 2012.

[43] Anne-Sophie Charest. “How can we analyze differentially-private syn-

thetic datasets?” In: JPC (2011).

[44] Moses Charikar et al. “Finding frequent items in data streams”. In:

ICALP. 2002.

[45] Amir Chaudhry et al. “Personal data: thinking inside the box”. In: Fifth

Decennial Aarhus Conference on Critical Alternatives. 2015.

[46] Kamalika Chaudhuri et al. “Differentially private empirical risk mini-

mization”. In: JMLR (2011).

[47] Ruichuan Chen et al. “SplitX: High-performance Private Analytics”. In:

SIGCOMM. 2013.

[48] Ruichuan Chen et al. “Towards statistical queries over distributed pri-

vate user data”. In: NSDI. 2012.

[49] Rui Chen et al. “Publishing set-valued data via differential privacy”.

In: VLDB (2011).

BIBLIOGRAPHY 177

[50] Tianqi Chen et al. “Mxnet: A flexible and efficient machine learn-

ing library for heterogeneous distributed systems”. In: arXiv preprint

1512.01274 (2015).

[51] Trishul M Chilimbi et al. “Project Adam: Building an Efficient and

Scalable Deep Learning Training System.” In: OSDI. 2014.

[52] Soumith Chintala et al. How to Train a GAN? Tips and tricks to make

GANs work. https://github.com/soumith/ganhacks.

[53] Radha Chitta et al. “Efficient Kernel Clustering Using Random Fourier

Features”. In: ICDM. 2012.

[54] Kyunghyun Cho et al. “Learning phrase representations using RNN

encoder-decoder for statistical machine translation”. In: EMNLP. 2014.

[55] Thomas H Cormen et al. Introduction to algorithms. MIT Press Cam-

bridge, 2001.

[56] Graham Cormode et al. “An Improved Data Stream Summary: The

Count-Min Sketch and Its Applications”. In: Journal of Algorithms

(2005).

[57] Graham Cormode et al. “Differentially private summaries for sparse

data”. In: ICDT. 2012.

[58] Henry Corrigan-Gibbs et al. “Dissent: accountable anonymous group

messaging”. In: ACM CCS. 2010.

[59] Henry Corrigan-Gibbs et al. “Prio: Private, Robust, and Scalable Com-

putation of Aggregate Statistics.” In: NSDI. 2017.

[60] Henry Corrigan-Gibbs et al. “Proactively Accountable Anonymous Mes-

saging in Verdict.” In: USENIX Security. 2013.

[61] Henry Corrigan-Gibbs et al. “Riposte: An anonymous messaging system

handling millions of users”. In: IEEE S&P. 2015.

[62] Count-Min Sketch and its applications. https://sites.google.com/

site/countminsketch/. 2015.

https://github.com/soumith/ganhacks
https://sites.google.com/site/countminsketch/
https://sites.google.com/site/countminsketch/

178 BIBLIOGRAPHY

[63] Jeffrey Dean et al. “Large scale distributed deep networks”. In: NIPS.

2012.

[64] Sander Dieleman et al. Lasagne: First Release. http://dx.doi.org/

10.5281/zenodo.27878. 2015.

[65] Roger Dingledine et al. Tor: The second-generation onion router. Tech.

rep. Naval Research Lab Washington DC, 2004.

[66] Kamran Ghasedi Dizaji et al. “Deep clustering via joint convolutional

autoencoder embedding and relative entropy minimization”. In: ICCV.

2017.

[67] Nathan Dowlin et al. “Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy”. In: ICML. 2016.

[68] Wenliang Du et al. “Privacy-preserving multivariate statistical analysis:

Linear regression and classification”. In: IEEE ICDM. 2004.

[69] Cynthia Dwork. “An ad omnia approach to defining and achieving pri-

vate data analysis”. In: PST in KDD. 2008.

[70] Cynthia Dwork. “Differential privacy: A survey of results”. In: TAMC.

2008.

[71] Cynthia Dwork et al. “Boosting and differential privacy”. In: FOCS.

2010.

[72] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data

Analysis”. In: TCC. 2006.

[73] Cynthia Dwork et al. “Pan-Private Streaming Algorithms.” In: ICS.

2010.

[74] Cynthia Dwork et al. “Robust traceability from trace amounts”. In:

FOCS. 2015.

[75] Cynthia Dwork et al. “The Algorithmic Foundations of Differential Pri-

vacy”. In: Foundations and Trends in Theoretical Computer Science

(2014).

http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878

BIBLIOGRAPHY 179

[76] Harrison Edwards et al. “Censoring representations with an adversary”.

In: ICLR. 2016.

[77] Tariq Elahi et al. “PrivEx: Private Collection of Traffic Statistics for

Anonymous Communication Networks”. In: ACM CCS. 2014.

[78] Taher ElGamal. “A public key cryptosystem and a signature scheme

based on discrete logarithms”. In: IEEE transactions on information

theory (1985).

[79] Dumitru Erhan et al. “The Difficulty of Training Deep Architectures

and the Effect of Unsupervised Pre-Training”. In: AISTATS. 2009.

[80] Úlfar Erlingsson et al. “RAPPOR: Randomized Aggregatable Privacy-

Preserving Ordinal Response”. In: ACM CCS. 2014.

[81] European Commission. General European Data Protection Regulation

(GDPR). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?

uri=COM:2012:0011:FIN:EN:PDF. 2012.

[82] Giulia Fanti et al. “Building a RAPPOR with the unknown: Privacy-

preserving learning of associations and data dictionaries”. In: PETS

(2016).

[83] Matthew Fredrikson et al. “Privacy in pharmacogenetics: An end-to-

end case study of personalized warfarin dosing”. In: USENIX Security.

2014.

[84] Matt Fredrikson et al. “Model inversion attacks that exploit confidence

information and basic countermeasures”. In: ACM CCS. 2015.

[85] Robin C Geyer et al. “Differentially Private Federated Learning: A

Client Level Perspective”. In: arXiv preprint 1712.07557 (2017).

[86] Ian Goodfellow et al. “Deep Learning”. MIT Press. 2016.

[87] Ian Goodfellow et al. “Generative adversarial nets”. In: NIPS. 2014.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0011:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0011:FIN:EN:PDF

180 BIBLIOGRAPHY

[88] David Goulet et al. Hidden-Service statistics Reported by Relays.

https : / / research . torproject . org / techreports / hidden -

service-stats-2015-04-28.pdf. 2015.

[89] Thore Graepel et al. “ML confidential: Machine Learning on Encrypted

Data”. In: ICISC. 2012.

[90] Ishaan Gulrajani et al. “Improved training of wasserstein gans”. In:

arXiv preprint 1704.00028 (2017).

[91] Jihun Hamm et al. “Learning privately from multiparty data”. In:

ICML. 2016.

[92] Moritz Hardt et al. “A multiplicative weights mechanism for privacy-

preserving data analysis”. In: FOCS. 2010.

[93] Moritz Hardt et al. “A Simple and Practical Algorithm for Differentially

Private Data Release”. In: NIPS. 2012.

[94] Jamie Hayes et al. “LOGAN: Membership Inference Attacks Against

Generative Models”. In: Under Submission - arXiv preprint 1705.07663.

PoPETS 2019.

[95] Jonathan L Herlocker et al. “Evaluating Collaborative Filtering Rec-

ommender Systems”. In: ACM TOIS (2004).

[96] Briland Hitaj et al. “Deep models under the GAN: information leakage

from collaborative deep learning”. In: ACM CCS. 2017.

[97] Susan Hohenberger et al. “ANONIZE: A large-scale anonymous survey

system”. In: IEEE S&P. 2014.

[98] Nils Homer et al. “Resolving individuals contributing trace amounts of

DNA to highly complex mixtures using high-density SNP genotyping

microarrays”. In: PLoS Genet (2008).

[99] Chih-Chung Hsu et al. “CNN-Based Joint Clustering and Representa-

tion Learning with Feature Drift Compensation for Large-Scale Image

Data”. In: IEEE Transactions on Multimedia ().

https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf

BIBLIOGRAPHY 181

[100] Justin Hsu et al. “Distributed Private Heavy Hitters”. In: ICALP. 2012.

[101] Chong Huang et al. “Context-aware generative adversarial privacy”. In:

Entropy (2017).

[102] Gary B. Huang et al. Labeled Faces in the Wild: A Database for Studying

Face Recognition in Unconstrained Environments. Tech. rep. http://

vis-www.cs.umass.edu/lfw/lfw.pdf. University of Massachusetts,

Amherst, 2007.

[103] Peihao Huang et al. “Deep embedding network for clustering”. In: IEEE

International Conference on Pattern Recognition (ICPR). 2014.

[104] Sergey Ioffe et al. “Batch normalization: Accelerating deep network

training by reducing internal covariate shift”. In: ICML. 2015, pp. 448–

456.

[105] Geetha Jagannathan et al. “Privacy-preserving imputation of missing

data”. In: Data & Knowledge Engineering (2008).

[106] Rob Jansen et al. “Safely measuring tor”. In: ACM CCS. 2016.

[107] Marek Jawurek et al. “Fault-Tolerant Privacy-Preserving Statistics”.

In: PETS. 2012.

[108] Shouling Ji et al. “On Your Social Network De-anonymizablity: Quan-

tification and Large Scale Evaluation with Seed Knowledge.” In: NDSS.

2015.

[109] Jinyuan Jia et al. “AttriGuard: A Practical Defense Against Attribute

Inference Attacks via Adversarial Machine Learning”. In: USENIX Se-

curity. 2018.

[110] Kaggle.com. Diabetic Retinopathy Detection. https://www.kaggle.

com/c/diabetic-retinopathy-detection.

[111] Andrej Karpathy et al. Generative Models. https://blog.openai.

com/generative-models/. 2017.

http://vis-www.cs.umass.edu/lfw/lfw.pdf
http://vis-www.cs.umass.edu/lfw/lfw.pdf
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://blog.openai.com/generative-models/
https://blog.openai.com/generative-models/

182 BIBLIOGRAPHY

[112] Tero Karras et al. “Progressive growing of gans for improved quality,

stability, and variation”. In: ICLR. 2018.

[113] Emilia Käsper. “Fast Elliptic Curve Cryptography in OpenSSL”. In:

FC. 2012.

[114] Yoon Kim. “Convolutional neural networks for sentence classification”.

In: arXiv preprint 1408.5882 (2014).

[115] Diederik P Kingma et al. “Auto-Encoding Variational Bayes”. In: ICLR.

2013.

[116] Diederik Kingma et al. “Adam: A method for stochastic optimization”.

In: arXiv preprint 1412.6980 (2014).

[117] Rob Kitchin. The data revolution: Big data, open data, data infrastruc-

tures and their consequences. Sage, 2014.

[118] Naveen Kodali et al. “On convergence and stability of GANs”. In: arXiv

preprint 1705.07215 (2017).

[119] Alex Krizhevsky et al. Learning multiple layers of features from tiny

images. Tech. rep. https://www.cs.toronto.edu/~kriz/learning-

features-2009-TR.pdf. University of Toronto, 2009.

[120] Klaus Kursawe et al. “Privacy-friendly Aggregation for the Smart-grid”.

In: PETS. 2011.

[121] Vasileios Lampos et al. “Advances in nowcasting influenza-like illness

rates using search query logs”. In: Scientific reports (2015).

[122] Anders Boesen Lindbo Larsen et al. “Autoencoding beyond pixels using

a learned similarity metric”. In: arXiv preprint 1512.09300 (2015).

[123] Yann LeCun et al. “Deep Learning”. In: Nature (2015).

[124] Yann LeCun et al. “Gradient-based learning applied to document recog-

nition”. In: Proceedings of the IEEE (1998).

[125] Christian Ledig et al. Photo-realistic single image super-resolution using

a generative adversarial network. 2016.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

BIBLIOGRAPHY 183

[126] Fengfu Li et al. “Discriminatively Boosted Image Clustering with Fully

Convolutional Auto-Encoders”. In: arXiv preprint 1703.07980 (2017).

[127] Haoran Li et al. “Differentially private synthesization of multi-

dimensional data using copula functions”. In: EDBT. 2014.

[128] Ninghui Li et al. “t-closeness: Privacy beyond k-anonymity and l-

diversity”. In: IEEE ICDE. 2007.

[129] Yujun Lin et al. “Deep Gradient Compression: Reducing the Commu-

nication Bandwidth for Distributed Training”. In: ICLR. 2018.

[130] Zi Lin et al. “Efficient Private Proximity Testing with GSM Location

Sketches”. In: FC. 2012.

[131] Yehuda Lindell et al. “Privacy preserving data mining”. In: CRYPTO.

2000.

[132] Fang Liu. “Model-based differential private data synthesis”. In: arXiv

preprint 1606.08052 (2016).

[133] Jian Liu et al. “Oblivious neural network predictions via minionn trans-

formations”. In: ACM CCS. 2017.

[134] Yunhui Long et al. “Understanding Membership Inferences on Well-

Generalized Learning Models”. In: arXiv preprint 1802.04889 (2018).

[135] Mario Lucic et al. “Are GANs Created Equal? A Large-Scale Study”.

In: arXiv preprint 1711.10337 (2017).

[136] Laurens van der Maaten et al. “Visualizing data using t-SNE”. In:

JMLR (2008).

[137] Ashwin Machanavajjhala et al. “l-diversity: Privacy beyond k-

anonymity”. In: IEEE ICDE. 2006.

[138] Ashwin Machanavajjhala et al. “Privacy: Theory meets practice on the

map”. In: ICDE. 2008.

184 BIBLIOGRAPHY

[139] Mohammad Malekzadeh et al. “Protecting sensory data against sensi-

tive inferences”. In: EuroSys Workshop on Privacy by Design in Dis-

tributed Systems. 2018.

[140] M Malekzadeh et al. “Replacement autoencoder: A privacy-preserving

algorithm for sensory data analysis”. In: IEEE IoTDI. 2018.

[141] Xudong Mao et al. “Least squares generative adversarial networks”. In:

IEEE ICCV. 2017.

[142] David McClure et al. “Differential Privacy and Statistical Disclosure

Risk Measures: An Investigation with Binary Synthetic Data.” In: TDP

(2012).

[143] H Brendan McMahan et al. “Communication-efficient learning of deep

networks from decentralized data”. In: AISTATS. 2017.

[144] H Brendan McMahan et al. “Learning differentially private language

models without losing accuracy”. In: ICLR. 2018.

[145] F. McSherry. “Privacy integrated queries: An extensible platform for

privacy-preserving data analysis”. In: SIGMOD. 2009.

[146] F. McSherry et al. “Mechanism design via differential privacy”. In:

FOCS. 2007.

[147] Luca Melis et al. “Efficient private statistics with succinct sketches”.

In: NDSS. 2016.

[148] Luca Melis et al. “Exploiting Unintended Feature Leakage in Collabo-

rative Learning”. In: IEEE S&P. 2019.

[149] Luca Melis et al. “Private processing of outsourced network functions:

Feasibility and constructions”. In: ACM SDN-NFV Security. 2016.

[150] Tomas Mikolov et al. “Efficient estimation of word representations in

vector space”. In: NIPS. 2013.

[151] Darakhshan Mir et al. “Pan-Private Algorithms via Statistics on

Sketches”. In: PODS. 2011.

BIBLIOGRAPHY 185

[152] Payman Mohassel et al. “SecureML: A system for scalable privacy-

preserving machine learning”. In: IEEE S&P. 2017.

[153] Anna Monreale et al. “Privacy-Preserving Distributed Movement Data

Aggregation”. In: GISHE. 2013.

[154] Philipp Moritz et al. “SparkNet: Training deep networks in Spark”. In:

arXiv preprint 1511.06051 (2015).

[155] Steven J Murdoch et al. “Low-cost traffic analysis of Tor”. In: IEEE

S&P. 2005.

[156] Arvind Narayanan et al. “De-anonymizing social networks”. In: IEEE

S&P. 2009.

[157] Arvind Narayanan et al. “How to break anonymity of the netflix prize

dataset”. In: arXiv preprint cs/0610105 (2006).

[158] Arvind Narayanan et al. “Location Privacy via Private Proximity Test-

ing”. In: NDSS. 2011.

[159] Hong-Wei Ng et al. “A data-driven approach to cleaning large face

datasets”. In: ICIP. 2014.

[160] Valeria Nikolaenko et al. “Privacy-Preserving Matrix Factorization”. In:

ACM CCS. 2013.

[161] Brendan O’Connor et al. “From tweets to polls: Linking text sentiment

to public opinion time series.” In: ICWSM. 2010.

[162] Seong Joon Oh et al. “Towards Reverse-Engineering Black-Box Neural

Networks”. In: ICLR. 2018.

[163] Seyed Ali Ossia et al. “A Hybrid Deep Learning Architecture for

Privacy-Preserving Mobile Analytics”. In: ACM TKDD (2018).

[164] otoro.net. Generating Large Images from Latent Vectors. http://blog.

otoro.net/2016/04/01/generating-large-images-from-latent-

vectors/. 2016.

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

186 BIBLIOGRAPHY

[165] Jun Pang et al. “DeepCity: A feature learning framework for mining

location check-ins”. In: ICWSM. 2017.

[166] Nicolas Papernot et al. “Scalable Private Learning with PATE”. In:

ICLR. 2018.

[167] Nicolas Papernot et al. “Semi-supervised knowledge transfer for deep

learning from private training data”. In: ICLR. 2017.

[168] Manas Pathak et al. “Multiparty differential privacy via aggregation of

locally trained classifiers”. In: NIPS. 2010.

[169] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:

JMLR (2011).

[170] Jeffrey Pennington et al. “Spherical Random Features for Polynomial

Kernels”. In: NIPS. 2015.

[171] NhatHai Phan et al. “Differential Privacy Preservation for Deep Auto-

Encoders: an Application of Human Behavior Prediction”. In: AAAI.

2016.

[172] NhatHai Phan et al. “Preserving differential privacy in convolutional

deep belief networks”. In: ML (2017).

[173] Raluca Ada Popa et al. “Privacy and accountability for location-based

aggregate statistics”. In: ACM CCS. 2011.

[174] Apostolos Pyrgelis et al. “Knock Knock, Who’s There? Membership

Inference on Aggregate Location Data”. In: NDSS. 2018.

[175] Jianwei Qian et al. “De-anonymizing social networks and inferring pri-

vate attributes using knowledge graphs”. In: INFOCOM. 2016.

[176] Alec Radford et al. “Unsupervised representation learning with deep

convolutional generative adversarial networks”. In: arXiv preprint

1511.06434 (2015).

[177] Ali Rahimi et al. “Random Features for Large-Scale Kernel Machines”.

In: NIPS. 2007.

BIBLIOGRAPHY 187

[178] Jerome P Reiter et al. “Bayesian estimation of disclosure risks for mul-

tiply imputed, synthetic data”. In: JPC (2014).

[179] Jerome P Reiter et al. “Estimating risks of identification disclosure in

partially synthetic data”. In: JPC (2009).

[180] Paul Resnick et al. “Recommender Systems”. In: Communications of

the ACM (1997).

[181] Marzieh Saeidi et al. “SentiHood: targeted aspect based sentiment anal-

ysis dataset for urban neighbourhoods”. In: COLING. 2016.

[182] Masaki Saito et al. “Temporal generative adversarial nets with singular

value clipping”. In: ICCV. 2017.

[183] Tim Salimans et al. “Improved Techniques for Training GANs”. In:

NIPS. 2016.

[184] Tim Salimans et al. “Weight normalization: A simple reparameteriza-

tion to accelerate training of deep neural networks”. In: NIPS. 2016.

[185] Badrul Sarwar et al. “Item-based Collaborative Filtering Recommen-

dation Algorithms”. In: WWW. 2001.

[186] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”.

In: Neural networks (2015).

[187] Bernhard Schölkopf et al. “Nonlinear Component Analysis as a Kernel

Eigenvalue Problem”. In: Neural Computation 10.5 (1998).

[188] Elaine Shi et al. “Privacy-Preserving Aggregation of Time-Series Data”.

In: NDSS. 2011.

[189] Reza Shokri et al. “Membership inference attacks against machine learn-

ing models”. In: IEEE S&P. 2017.

[190] Reza Shokri et al. “Privacy-preserving deep learning”. In: ACM CCS.

2015.

[191] Karen Simonyan et al. “Very deep convolutional networks for large-scale

image recognition”. In: arXiv preprint 1409.1556 (2014).

188 BIBLIOGRAPHY

[192] Fabio Soldo et al. “Predictive blacklisting as an implicit recommenda-

tion system”. In: INFOCOM. 2010.

[193] Congzheng Song et al. “Machine Learning Models that Remember Too

Much”. In: ACM CCS. 2017.

[194] Nitish Srivastava et al. “Dropout: a simple way to prevent neural net-

works from overfitting.” In: JMLR (2014).

[195] Dong Su et al. “Differentially Private K-Means Clustering”. In: ACM

CODASPY. 2016.

[196] L. Sweeney. “k-Anonymity: A Model for Protecting Privacy”. In:

JUFKS (2002).

[197] Lucas Theis et al. “A note on the evaluation of generative models”. In:

arXiv preprint 1511.01844 (2015).

[198] Lucas Theis et al. “Lossy image compression with compressive autoen-

coders”. In: arXiv preprint 1703.00395 (2017).

[199] Tijmen Tieleman. “Training restricted Boltzmann machines using ap-

proximations to the likelihood gradient”. In: ICML. 2008.

[200] Jörn Tillmanns. “Privately Computing Set-Union and Set-Intersection

Cardinality via Bloom Filters”. In: ACISP. 2015.

[201] Florian Tramèr et al. “Stealing machine learning models via prediction

apis”. In: USENIX Security. 2016.

[202] Aleksei Triastcyn et al. “Generating Differentially Private Datasets Us-

ing GANs”. In: arXiv preprint 1803.03148 (2018).

[203] Ardhendu Tripathy et al. “Privacy-Preserving Adversarial Networks”.

In: arXiv preprint 1712.07008 (2017).

[204] Stacey Truex et al. “Towards Demystifying Membership Inference At-

tacks”. In: arXiv:1807.09173 (2018).

[205] Mohammed Tuhin. “Sanitization of Call Detail Records via Differentially-

Private Bloom Filters”. In: DBSec. 2015.

BIBLIOGRAPHY 189

[206] István Varga et al. “Aid is out there: Looking for help from tweets

during a large scale disaster”. In: ACL. 2013.

[207] Sreekanth Vempati et al. “Generalized RBF feature maps for Efficient

Detection”. In: BMVC. 2010.

[208] Ben Verhoeven et al. “CLiPS Stylometry Investigation (CSI) corpus: A

Dutch corpus for the detection of age, gender, personality, sentiment

and deception in text”. In: LREC. 2014.

[209] Binghui Wang et al. “Stealing Hyperparameters in Machine Learning”.

In: IEEE S&P. 2018.

[210] Larry Wasserman et al. “A statistical framework for differential pri-

vacy”. In: JASA (2010).

[211] Xi Wu et al. “Differentially Private Stochastic Gradient Descent for

in-RDBMS Analytics”. In: arXiv preprint 1606.04722 (2016).

[212] Yuhuai Wu et al. “On the Quantitative Analysis of Decoder-Based Gen-

erative Models”. In: ICLR. 2017.

[213] Xiaokui Xiao et al. “iReduct: differential privacy with reduced relative

errors”. In: ACM SIGMOD. 2011.

[214] Junyuan Xie et al. “Unsupervised Deep Embedding for Clustering Anal-

ysis”. In: ICML. 2016.

[215] Eric P Xing et al. “Petuum: A new platform for distributed machine

learning on big data”. In: IEEE TBD (2015).

[216] Bo Yang et al. “Towards k-means-friendly spaces: Simultaneous deep

learning and clustering”. In: arXiv preprint 1610.04794 (2016).

[217] Dingqi Yang et al. “NationTelescope: Monitoring and visualizing large-

scale collective behavior in LBSNs”. In: JNCA (2015).

[218] Dingqi Yang et al. “Participatory cultural mapping based on collective

behavior in location based social networks”. In: ACM TIST (2015).

190 BIBLIOGRAPHY

[219] Dingqi Yang et al. “PrivCheck: privacy-preserving check-in data pub-

lishing for personalized location based services”. In: UbiComp. 2016.

[220] Jianwei Yang et al. “Joint unsupervised learning of deep representations

and image clusters”. In: IEEE CVPR. 2016.

[221] Raymond Yeh et al. “Semantic Image Inpainting with Perceptual and

Contextual Losses”. In: arXiv preprint 1607.07539 (2016).

[222] Samuel Yeom et al. “Privacy Risk in Machine Learning: Analyzing the

Connection to Overfitting”. In: IEEE CSF. 2018.

[223] Chiyuan Zhang et al. “Understanding deep learning requires rethinking

generalization”. In: ICLR. 2017.

[224] Jun Zhang et al. “Functional mechanism: regression analysis under dif-

ferential privacy”. In: VLDB (2012).

[225] Jun Zhang et al. “Privbayes: Private data release via bayesian net-

works”. In: ACM TODS (2017).

[226] Ning Zhang et al. “Beyond frontal faces: Improving person recognition

using multiple cues”. In: IEEE CVPR. 2015.

[227] Yin Zheng et al. “Variational Deep Embedding: A Generative Approach

to Clustering”. In: IJCAI (2017).

[228] Martin Zinkevich et al. “Parallelized stochastic gradient descent”. In:

NIPS. 2010.

	Introduction
	Research Questions
	Thesis Contributions
	Thesis Structure
	Publications
	Further Contributions

	Background
	Cryptography
	Tools
	Assumptions
	Differential Privacy (DP)

	Succinct Data Structures
	Machine Learning
	Recommender systems
	Time-series data prediction
	Kernel k-means with random features
	Neural networks
	Collaborative learning

	Related Work
	Private Statistics
	Privacy-preserving aggregation
	Privacy and succinct data representation

	Privacy in Machine Learning
	Learning with privacy
	Private data release
	Membership inference attacks
	Other attacks on machine learning models

	Efficient Privacy-Preserving Computation of Statistics
	Private Recommender Systems For Streaming Services
	Overview
	Protocol
	Prototype implementation
	Performance evaluation

	Private Aggregate Location Prediction
	Tor Hidden Services Statistics
	Private median estimation using Count Sketch
	Implementation and evaluation

	Privacy-Preserving Data Release with Generative Neural Networks
	Differentially Private Generative Model (DPGM)
	Private kernel k-means
	Private Stochastic Gradient Descent
	Adaptive selection of the norm bound
	Synthetic data generation

	Privacy Analysis
	Experimental Evaluation
	Experimental setup
	Results with image dataset
	Results with CDR and transit dataset
	Multi-layer Variational Autoencoder

	Evaluating Privacy Leakage of Generative Models
	Attacks Outline
	Threat model
	White-box attack
	Black-box attack with no auxiliary knowledge
	Black-box attack with limited auxiliary knowledge

	Evaluation
	Experimental setup
	Naïve approaches
	White-box attack
	Black-box attack with no auxiliary knowledge
	Black-box attack with limited auxiliary knowledge
	Analysis
	Evaluation on Diabetic Retinopathy dataset

	Discussion
	Cost of the attacks
	Sensitivity to training set size and prediction ordering
	Defenses

	Evaluating Privacy Leakage of Collaborative Learning
	Inference Attacks
	Threat model
	Overview of the attacks
	Membership inference
	Passive property inference
	Active property inference

	Experiments
	Datasets and model architectures
	Two-party membership inference
	Two-party single-batch property inference
	Inferring when a property occurs
	Active property inference
	Multi-party with synchronized SGD
	Multi-party with model averaging

	Defenses
	Selective gradient sharing
	Dimensionality reduction
	Dropout
	Participant-level differential privacy
	Sensitivity to number of training epochs

	Conclusion
	Bibliography

